Khan A, Rajput S, Anas M, Malik VK, Maitra T, Nath TK, Taraphder A. The effect of antisite disorder on magnetic and exchange bias properties of Gd-substituted Y
2CoMnO
6double perovskite.
JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022;
34:435801. [PMID:
35973421 DOI:
10.1088/1361-648x/ac8a35]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Combining experimental investigations and first-principles density functional theory (DFT) calculations, we report physical and magnetic properties of Gd-substituted Y2CoMnO6double perovskite, which are strongly influenced by antisite-disorder-driven spin configurations. On Gd doping, Co and Mn ions are present in mixed-valence (Co3+, Co2+, Mn3+and Mn4+) states. Multiple magnetic transitions have been observed: (i) paramagnetic to ferromagnetic transition is found to occur atTC= 95.5 K, (ii) antiferromagnetic transition atTN= 47 K is driven by3d-4fpolarization and antisite disorder present in the sample, (iii) change in magnetization belowT⩽20 K, primarily originating from Gd ordering, as revealed from our DFT calculations. AC susceptibility measurement confirms the absence of any spin-glass or cluster-glass phases in this material. A significantly large exchange bias effect (HEB= 1.07 kOe) is found to occur below 47 K due to interfaces of FM and AFM clusters created by antisite-disorder.
Collapse