1
|
Chen Y, Bâldea I, Yu Y, Liang Z, Li MD, Koren E, Xie Z. CP-AFM Molecular Tunnel Junctions with Alkyl Backbones Anchored Using Alkynyl and Thiol Groups: Microscopically Different Despite Phenomenological Similarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4410-4423. [PMID: 38348971 PMCID: PMC10906003 DOI: 10.1021/acs.langmuir.3c03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.
Collapse
Affiliation(s)
- Yuhong Chen
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ioan Bâldea
- Theoretical
Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Yongxin Yu
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zining Liang
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ming-De Li
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Elad Koren
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Zuoti Xie
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Quantum
Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen-Hong Kong International Science and Technology
Park, No. 3 Binglang
Road, Futian District, Shenzhen, Guangdong 518048, China
| |
Collapse
|
2
|
Bâldea I. Can tunneling current in molecular junctions be so strongly temperature dependent to challenge a hopping mechanism? Analytical formulas answer this question and provide important insight into large area junctions. Phys Chem Chem Phys 2024; 26:6540-6556. [PMID: 38328878 DOI: 10.1039/d3cp05046g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Analytical equations like Richardson-Dushman's or Shockley's provided a general, if simplified conceptual background, which was widely accepted in conventional electronics and made a fundamental contribution to advances in the field. In the attempt to develop a (highly desirable, but so far missing) counterpart for molecular electronics, in this work, we deduce a general analytical formula for the tunneling current through molecular junctions mediated by a single level that is valid for any bias voltage and temperature. Starting from this expression, which is exact and obviates cumbersome numerical integration, in the low and high temperature limits we also provide analytical formulas expressing the current in terms of elementary functions. They are accurate for broad model parameter ranges relevant for real molecular junctions. Within this theoretical framework we show that: (i) by varying the temperature, the tunneling current can vary by several orders of magnitude, thus debunking the myth that a strong temperature dependence of the current is evidence for a hopping mechanism, (ii) real molecular junctions can undergo a gradual (Sommerfeld-Arrhenius) transition from a weakly temperature dependent to a strongly ("exponential") temperature dependent current that can be tuned by the applied bias, and (iii) important insight into large area molecular junctions with eutectic gallium indium alloy (EGaIn) top electrodes can be gained. E.g., merely based on transport data, we estimate that the current carrying molecules represent only a fraction of f ≈ 4 × 10-4 out of the total number of molecules in a large area Au-S-(CH2)13-CH3/EGaIn junction.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Song J, Zhu J, Wang Z, Liu G. Controlling Charge Transport in Molecular Wires through Transannular π-π Interaction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7801. [PMID: 36363392 PMCID: PMC9654154 DOI: 10.3390/ma15217801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
This paper describes the influence of the transannular π-π interaction in controlling the carrier transport in molecular wires by employing the STM break junction technique. Five pentaphenylene-based molecular wires that contained [2.2]paracyclophane-1,9-dienes (PCD) as the building block were prepared as model compounds. Functional substituents with different electronic properties, ranging from strong acceptors to strong donors, were attached to the top parallel aromatic ring and used as a gate. It was found that the carrier transport features of these molecular wires, such as single-molecule conductance and a charge-tunneling barrier, can be systematically controlled through the transannular π-π interaction.
Collapse
Affiliation(s)
- Jianjian Song
- School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei Province, Wuhan 430100, China
| | - Jianglin Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China
| | - Zhaoyong Wang
- China Oilfield Services Ltd. (Blue Ocean BD Hi-Tech Co., Ltd.), Quanzhou 362800, China
| | - Gang Liu
- China Oilfield Services Ltd. (Blue Ocean BD Hi-Tech Co., Ltd.), Quanzhou 362800, China
| |
Collapse
|
4
|
Huez C, Guérin D, Lenfant S, Volatron F, Calame M, Perrin ML, Proust A, Vuillaume D. Redox-controlled conductance of polyoxometalate molecular junctions. NANOSCALE 2022; 14:13790-13800. [PMID: 36102689 DOI: 10.1039/d2nr03457c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate the reversible in situ photoreduction of molecular junctions of a phosphomolybdate [PMo12O40]3- monolayer self-assembled on flat gold electrodes, connected by the tip of a conductive atomic force microscope. The conductance of the one electron reduced [PMo12O40]4- molecular junction is increased by ∼10, and this open-shell state is stable in the junction in air at room temperature. The analysis of a large current-voltage dataset by unsupervised machine learning and clustering algorithms reveals that the electron transport in the pristine phosphomolybdate junctions leads to symmetric current-voltage curves, controlled by the lowest unoccupied molecular orbital (LUMO) at 0.6-0.7 eV above the Fermi energy with ∼25% of the junctions having a better electronic coupling to the electrodes than the main part of the dataset. This analysis also shows that a small fraction (∼18% of the dataset) of the molecules is already reduced. The UV light in situ photoreduced phosphomolybdate junctions systematically feature slightly asymmetric current-voltage behaviors, which is ascribed to the electron transport mediated by the single occupied molecular orbital (SOMO) nearly at resonance with the Fermi energy of the electrodes and by a closely located single unoccupied molecular orbital (SUMO) at ∼0.3 eV above the SOMO with a weak electronic coupling to the electrodes (∼50% of the dataset) or at ∼0.4 eV but with a better electrode coupling (∼50% of the dataset). These results shed light on the electronic properties of reversible switchable redox polyoxometalates, a key point for potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Cécile Huez
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - David Guérin
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Stéphane Lenfant
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Florence Volatron
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michel Calame
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Dept. of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Mickael L Perrin
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Proust
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| |
Collapse
|
5
|
Park S, Jo JW, Jang J, Ohto T, Tada H, Yoon HJ. Thermopower in Transition from Tunneling to Hopping. NANO LETTERS 2022; 22:7682-7689. [PMID: 36067367 DOI: 10.1021/acs.nanolett.2c03083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Seebeck effect of a molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPIn where n = 1-9) based on imine condensation between an aryl amine and aldehyde and investigates how the Seebeck coefficient (S, μV/K) varies at the crossover region. The S value of OPIn linearly increased with increasing the molecular length (d, nm), ranging from 7.2 to 38.0 μV/K. The increasing rate changed from 0.99 to 0.38 μV·K-1 Å-1 at d = 3.4 nm (OPI4). Combined experimental and theoretical studies indicated that such a change stems from a tunneling-to-hopping transition, and the small but detectable length-dependence of thermopower in the long molecules originates from the gradual reduction of the tunneling contribution to the broadening of molecular orbital energy level, rather than its relative position to the Fermi level. Our work helps to bridge the gap between bulk and nanoscale thermoelectric systems.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Woo Jo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hirokazu Tada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
6
|
Bâldea I. Are Asymmetric SAM‐Induced Work Function Modifications Relevant for Real Molecular Rectifiers? ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry Heidelberg University Im Neuenheimer Feld 229 Heidelberg D‐69120 Germany
| |
Collapse
|
7
|
Bâldea I. What Can We Learn from the Time Evolution of COVID-19 Epidemic in Slovenia? ADVANCED THEORY AND SIMULATIONS 2021; 4:2000225. [PMID: 34179685 PMCID: PMC8212090 DOI: 10.1002/adts.202000225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/07/2021] [Indexed: 11/18/2022]
Abstract
A recent work indicates that temporarily splitting larger populations into smaller groups can efficiently mitigate the spread of SARS‐CoV‐2 virus. The fact that, soon afterward, the two million people Slovenia was the first European country proclaiming the end of COVID‐19 epidemic within national borders may be relevant from this perspective. Motivated by this evolution, in this paper the time dynamics of coronavirus cases in Slovenia is investigated with emphasis on how efficient various containment measures act to diminish the number of COVID‐19 infections. Noteworthily, the present analysis does not rely on any speculative theoretical assumption; it is solely based on raw epidemiological data. Out of the results presented here, the most important one is perhaps the finding that, while imposing drastic curfews and travel restrictions reduce the infection rate κ by a factor of four with respect to the unrestricted state, they only improve the κ‐value by ≈15% as compared to the much bearable state of social and economic life wherein wearing face masks and social distancing rules are enforced/followed. Significantly for behavioral and social science, our analysis may reveal an interesting self‐protection instinct of the population, which became manifest even before the official lockdown enforcement.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry Heidelberg University INF 229 D‐69120 Heidelberg Germany
| |
Collapse
|
8
|
Gu MW, Peng HH, Chen IWP, Chen CH. Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. NATURE MATERIALS 2021; 20:658-664. [PMID: 33510446 DOI: 10.1038/s41563-020-00876-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Understanding chemical bonding and conductivity at the electrode-molecule interface is key for the operation of single-molecule junctions. Here we apply the d-band theory that describes interfacial interactions between adsorbates and transition metal surfaces to study electron transport across these devices. We realized bimetallic Au electrodes modified with a monoatomic Ag adlayer to connect α,ω-alkanoic acids (HO2C(CH2)nCO2H). The force required to break the molecule-electrode binding and the contact conductance Gn=0 are 1.1 nN and 0.29 G0 (the conductance quantum, 1 G0 = 2e2/h ≈ 77.5 μS), which makes these junctions, respectively, 1.3-1.8 times stronger and 40-60-fold more conductive than junctions with bare Au or Ag electrodes. A similar performance was found for Au electrodes modified by Cu monolayers. By integrating the Newns-Anderson model with the Hammer-Nørskov d-band model, we explain how the surface d bands strengthen the adsorption and promote interfacial electron transport, which provides an alternative avenue for the optimization of molecular electronic devices.
Collapse
Affiliation(s)
- Mong-Wen Gu
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Hao Howard Peng
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - I-Wen Peter Chen
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Chun-Hsien Chen
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Bâldea I. Suppression of Groups Intermingling as an Appealing Option for Flattening and Delaying the Epidemiological Curve While Allowing Economic and Social Life at a Bearable Level during the COVID-19 Pandemic. ADVANCED THEORY AND SIMULATIONS 2020; 3:2000132. [PMID: 33173845 PMCID: PMC7645871 DOI: 10.1002/adts.202000132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/07/2020] [Indexed: 11/23/2022]
Abstract
The COVID‐19 pandemic in a population modelled as a network wherein infection can propagate both via intra‐ and inter‐group interactions is simulated. The results emphasize the importance of diminishing the inter‐group infections in the effort of substantial flattening/delaying of the epi(demiologic) curve with concomitant mitigation of disastrous economy and social consequences. To exemplify, splitting a population into m (say, 5 or 10) noninteracting groups while keeping intra‐group interaction unchanged yields a stretched epidemiological curve having the maximum number of daily infections reduced and postponed in time by the same factor m (5 or 10). More generally, the study suggests a practical approach to fight against SARS‐ CoV‐ 2 virus spread based on population splitting into groups and minimizing intermingling between them. This strategy can be pursued by large‐scale infrastructure reorganization of activity at different levels in big logistic units (e.g., large productive networks, factories, enterprises, warehouses, schools, (seasonal) harvest work). Importantly, unlike total lockdown, the proposed approach prevents economic ruin and keeps social life at a more bearable level than distancing everyone from anyone. The declaration for the first time in Europe that COVID‐19 epidemic ended in the two‐million population Slovenia may be taken as support for the strategy proposed here.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie Universität Heidelberg INF 229 D‐69120 Heidelberg Germany
| |
Collapse
|
10
|
Bâldea I. Evidence That Molecules in Molecular Junctions May Not Be Subject to the Entire External Perturbation Applied to Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1329-1337. [PMID: 31957453 DOI: 10.1021/acs.langmuir.9b03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Whether molecules forming molecular junctions are really subject to the entire external perturbation applied to electrodes is an important issue, but so far, it has not received adequate consideration in the literature. In this paper, we demonstrate that, out of the temperature difference ΔTelectr between electrodes applied in thermopower measurements, molecules only feel a significantly smaller temperature difference (ΔTmolec < ΔTelectr). Rephrasing, temperature drops at metal-molecule interfaces are substantial. Our theoretical analysis to address this problem of fundamental importance for surface science is based on experimental data collected via ultraviolet photoelectron spectroscopy, transition voltage spectroscopy, and Seebeck coefficient measurements. An important practical consequence of the presently reported finding is that the energetic alignment of the frontier molecular orbital (HOMO or LUMO) of the embedded molecules with respect to the metallic Fermi level position deduced from thermopower data-and this is frequently the case in current studies of molecular electronics-is substantially overestimated. Another important result presented here is that, unlike the exponential length dependence characterizing electric conduction (which is a fingerprint for quantum tunneling), thermal conduction through the molecules considered (oligophenylene thiols and alkane thiols) exhibits a length dependence compatible with classical physics.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie , Universität Heidelberg , Im Neuenheimer Feld 229 , D-69120 Heidelberg , Germany
| |
Collapse
|
11
|
Xie Z, Bâldea I, Frisbie CD. Determination of Energy-Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Oligophenylene Thiols and Dithiols on Ag, Au, and Pt Electrodes. J Am Chem Soc 2019; 141:3670-3681. [DOI: 10.1021/jacs.8b13370] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ioan Bâldea
- Theoretische Chemie, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Xie Z, Bâldea I, Frisbie CD. Why one can expect large rectification in molecular junctions based on alkane monothiols and why rectification is so modest. Chem Sci 2018; 9:4456-4467. [PMID: 29896387 PMCID: PMC5956982 DOI: 10.1039/c8sc00938d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 11/23/2022] Open
Abstract
Many attempts to obtain high current rectification ratios (RRs) in molecular electronics are triggered by a potentiometer rule argument, which predicts that a strongly asymmetric location of the dominant molecular orbital yields large RR-values. Invoking this argument, molecular junctions based on alkane monothiols (CnT) can be expected to exhibit high RRs; the HOMO of these molecules is localized on the thiol terminal group bonded to one electrode. The extensive current-voltage (I-V) results for CP-AFM (conducting probe atomic force microscope) CnT junctions of various molecular lengths (n = 7, 8, 9, 10, and 12) and different metallic contacts (Ag, Au, and Pt) are consistent with conduction dominated by the HOMO, but the measured RR ∼ 1.5 is much smaller than that predicted by the potentiometer rule framework. Further, the linear shift in the HOMO position with applied bias, γ, which gives rise to rectification, is also smaller than expected, and critically, γ has the opposite sign from potentiometer rule predictions. Companion ab initio OVGF (outer valence Green's function) quantum chemical calculations provide important insight. Namely, a linear Stark shift γm is calculated for the HOMO of CnT molecules for electric field strengths (106-107 V cm-1) typical of molecular junctions, and the sign of γm matches the sign of the experimental γ for junctions derived from transport measurements, suggesting that the Stark effect plays an important role. However, the magnitude of the measured γ is only 10-15% of the computed value γm. We propose that this implies that the contacts are far from optimal; they substantially screen the effect of the applied bias, possibly via molecule-electrode interface states. We predict that, with optimized contacts, the rectification ratios in CnT-based junctions can reach reasonably high values (RR ≈ 500). We believe that Stark shifts and limited current rectification due to non-ideal contacts discussed here for the specific case of alkane monothiol junctions are issues of general interest for molecular electronics that deserve further consideration.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science , Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , USA .
| | - Ioan Bâldea
- Theoretische Chemie , Universität Heidelberg , INF 229 , D-69120 Heidelberg , Germany .
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science , Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , USA .
| |
Collapse
|
13
|
Smith CE, Xie Z, Bâldea I, Frisbie CD. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers. NANOSCALE 2018; 10:964-975. [PMID: 29192925 DOI: 10.1039/c7nr06461f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conducting probe atomic force microscopy (CP-AFM) was employed to examine electron tunneling in self-assembled monolayer (SAM) junctions. A 2.3 nm long perylene tetracarboxylic acid diimide (PDI) acceptor molecule equipped with isocyanide linker groups was synthesized, adsorbed onto Ag, Au and Pt substrates, and the current-voltage (I-V) properties were measured by CP-AFM. The dependence of the low-bias resistance (R) on contact work function indicates that transport is LUMO-assisted ('n-type behavior'). A single-level tunneling model combined with transition voltage spectroscopy (TVS) was employed to analyze the experimental I-V curves and to extract the effective LUMO position εl = ELUMO - EF and the effective electronic coupling (Γ) between the PDI redox core and the contacts. This analysis revealed a strong Fermi level (EF) pinning effect in all the junctions, likely due to interface dipoles that significantly increased with increasing contact work function, as revealed by scanning Kelvin probe microscopy (SKPM). Furthermore, the temperature (T) dependence of R was found to be substantial. For Pt/Pt junctions, R varied more than two orders of magnitude in the range 248 K < T < 338 K. Importantly, the R(T) data are consistent with a single step electron tunneling mechanism and allow independent determination of εl, giving values compatible with estimates of εl based on analysis of the full I-V data. Theoretical analysis revealed a general criterion to unambiguously rule out a two-step transport mechanism: namely, if measured resistance data exhibit a pronounced Arrhenius-type temperature dependence, a two-step electron transfer scenario should be excluded in cases where the activation energy depends on contact metallurgy. Overall, our results indicate (1) the generality of the Fermi level pinning phenomenon in molecular junctions, (2) the utility of employing the single level tunneling model for determining essential electronic structure parameters (εl and Γ), and (3) the importance of changing the nature of the contacts to verify transport mechanisms.
Collapse
Affiliation(s)
- Christopher E Smith
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
14
|
Vilan A, Aswal D, Cahen D. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chem Rev 2017; 117:4248-4286. [DOI: 10.1021/acs.chemrev.6b00595] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ayelet Vilan
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | | - David Cahen
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Xie Z, Bâldea I, Oram S, Smith CE, Frisbie CD. Effect of Heteroatom Substitution on Transport in Alkanedithiol-Based Molecular Tunnel Junctions: Evidence for Universal Behavior. ACS NANO 2017; 11:569-578. [PMID: 27936325 DOI: 10.1021/acsnano.6b06623] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The transport properties of molecular junctions based on alkanedithiols with three different methylene chain lengths were compared with junctions based on similar chains wherein every third -CH2- was replaced with O or S, that is, following the general formula HS(CH2CH2X)nCH2CH2SH, where X = CH2, O, or S and n = 1, 2, or 3. Conducting probe atomic force microscopy revealed that the low bias resistance of the chains increased upon substitution in the order CH2 < O < S. This change in resistance is ascribed to the observed identical trend in contact resistance, Rc, whereas the exponential prefactor β (length sensitivity) was essentially the same for all chains. Using an established, analytical single-level model, we computed the effective energy offset εh (i.e., Fermi level relative to the effective HOMO level) and the electronic coupling strength Γ from the current-voltage (I-V) data. The εh values were only weakly affected by heteroatom substitution, whereas the interface coupling strength Γ varied by over an order of magnitude. Consequently, we ascribe the strong variation in Rc to the systematic change in Γ. Quantum chemical calculations reveal that the HOMO density shifts from the terminal SH groups for the alkanedithiols to the heteroatoms in the substituted chains, which provides a plausible explanation for the marked decrease in Γ for the dithiols with electron-rich heteroatoms. The results indicate that the electronic coupling and thus the resistance of alkanedithiols can be tuned by substitution of even a single atom in the middle of the molecule. Importantly, when appropriately normalized, the experimental I-V curves were accurately simulated over the full bias range (±1.5 V) using the single-level model with no adjustable parameters. The data could be collapsed to a single universal curve predicted by the model, providing clear evidence that the essential physics is captured by this analytical approach and supporting its utility for molecular electronics.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Ioan Bâldea
- Theoretische Chemie, Universität Heidelberg , INF 229, D-69120 Heidelberg, Germany
- National Institute of Lasers, Plasma and Radiation Physics, Institute of Space Science , POB MG-23, RO 077125 Bucharest, Romania
| | - Stuart Oram
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Christopher E Smith
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Bâldea I. Protocol for disentangling the thermally activated contribution to the tunneling-assisted charge transport. Analytical results and experimental relevance. Phys Chem Chem Phys 2017; 19:11759-11770. [DOI: 10.1039/c7cp01103b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we present results demonstrating that the charge transport by tunneling in molecular junctions can exhibit a substantial temperature dependence.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie
- Universität Heidelberg
- D-69120 Heidelberg
- Germany
| |
Collapse
|
17
|
Vilan A. Revealing tunnelling details by normalized differential conductance analysis of transport across molecular junctions. Phys Chem Chem Phys 2017; 19:27166-27172. [DOI: 10.1039/c7cp05536f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new analysis tool reveals hidden fingerprints of tunnelling mechanisms and quantifies the bias response via a scaling bias parameter.
Collapse
Affiliation(s)
- A. Vilan
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
18
|
Bâldea I. Counterintuitive issues in the charge transport through molecular junctions. Phys Chem Chem Phys 2016; 17:31260-9. [PMID: 26549325 DOI: 10.1039/c5cp05476a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whether at phenomenological or microscopic levels, most theoretical approaches to charge transport through molecular junctions postulate or attempt to justify microscopically the existence of a dominant molecular orbital (MO). Within such single level descriptions, experimental current-voltage I-V curves are sometimes/often analyzed by using analytical formulas expressing the current as a cubic expansion in terms of the applied voltage V, and the possible V-driven shifts of the level energy offset relative to the metallic Fermi energy ε0 are related to the asymmetry of molecule-electrode couplings or an asymmetric location of the "center of gravity" of the MO with respect to electrodes. In this paper, we present results demonstrating the failure of these intuitive expectations. For example, we show how typical data processing based on cubic expansions yields a value of ε0 underestimated by a typical factor of about two. When compared to theoretical results of DFT approaches, which typically underestimate the HOMO-LUMO gap by a similar factor, this may create the false impression of "agreement" with experiments in situations where this is actually not the case. Furthermore, such cubic expansions yield model parameter values dependent on the bias range width employed for fitting, which is unacceptable physically. Finally, we present an example demonstrating that, counter-intuitively, the bias-induced change in the energy of an MO located much closer to an electrode can occur in a direction that is opposite to the change in the Fermi energy of that electrode. This is contrary to what one expects based on a "lever rule" argument, according to which the MO "feels" the local value of the electric potential, which is assumed to vary linearly across the junction and is closer to the potential of the closer electrode. This example emphasizes the fact that screening effects in molecular junctions can have a subtle character, contradicting common intuition.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Bâldea I. Invariance of molecular charge transport upon changes of extended molecule size and several related issues. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:418-431. [PMID: 27335734 PMCID: PMC4901537 DOI: 10.3762/bjnano.7.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/24/2016] [Indexed: 06/06/2023]
Abstract
As a sanity test for the theoretical method employed, studies on (steady-state) charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory's correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the "extended molecule"). This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators). It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively). To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR) is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower) at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do) is a procedure that yields spurious structures in nonlinear ranges of current-voltage curves.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie, Universität Heidelberg, INF 229, 69120 Heidelberg, Germany
- Institute of Space Sciences, National Institute for Lasers, Plasma, and Radiation Physics, National Institute for Lasers, Plasma, and Radiation Physics, 077125, Bucharest-Măgurele, Romania
| |
Collapse
|
20
|
Bâldea I. Fractional molecular charge studied via molecular vibrational properties. Specific aspects in Jahn–Teller active molecular species. RSC Adv 2016. [DOI: 10.1039/c6ra21476b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Jahn–Teller active and inactive vibrational modes are affected in a different manner by charge removal.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie
- Universität Heidelberg
- D-69120 Heidelberg
- Germany
| |
Collapse
|
21
|
Xie Z, Bâldea I, Smith CE, Wu Y, Frisbie CD. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function. ACS NANO 2015; 9:8022-8036. [PMID: 26190402 DOI: 10.1021/acsnano.5b01629] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the results of an extensive investigation of metal-molecule-metal tunnel junctions based on oligophenylene dithiols (OPDs) bound to several types of electrodes (M1-S-(C6H4)n-S-M2, with 1 ≤ n ≤ 4 and M1,2 = Ag, Au, Pt) to examine the impact of molecular length (n) and metal work function (Φ) on junction properties. Our investigation includes (1) measurements by scanning Kelvin probe microscopy of electrode work function changes (ΔΦ = ΦSAM - Φ) caused by chemisorption of OPD self-assembled monolayers (SAMs), (2) measurements of junction current-voltage (I-V) characteristics by conducting probe atomic force microscopy in the linear and nonlinear bias ranges, and (3) direct quantitative analysis of the full I-V curves. Further, we employ transition voltage spectroscopy (TVS) to estimate the energetic alignment εh = EF - EHOMO of the dominant molecular orbital (HOMO) relative to the Fermi energy EF of the junction. Where photoelectron spectroscopy data are available, the εh values agree very well with those determined by TVS. Using a single-level model, which we justify via ab initio quantum chemical calculations at post-density functional theory level and additional UV-visible absorption measurements, we are able to quantitatively reproduce the I-V measurements in the whole bias range investigated (∼1.0-1.5 V) and to understand the behavior of εh and Γ (contact coupling strength) extracted from experiment. We find that Fermi level pinning induced by the strong dipole of the metal-S bond causes a significant shift of the HOMO energy of an adsorbed molecule, resulting in εh exhibiting a weak dependence with the work function Φ. Both of these parameters play a key role in determining the tunneling attenuation factor (β) and junction resistance (R). Correlation among Φ, ΔΦ, R, transition voltage (Vt), and εh and accurate simulation provide a remarkably complete picture of tunneling transport in these prototypical molecular junctions.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Ioan Bâldea
- Theoretische Chemie, Universität Heidelberg , INF 229, D-69120 Heidelberg, Germany
- National Institute of Lasers, Plasma and Radiation Physics, Institute of Space Science , POB MG-23, RO 077125 Bucharest, Romania
| | - Christopher E Smith
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yanfei Wu
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|