1
|
Hetzke T, Vogel M, Halbritter ALJ, Saha S, Suess B, Sigurdsson ST, Prisner TF. Simultaneous Localization of Two High Affinity Divalent Metal Ion Binding Sites in the Tetracycline RNA Aptamer with Mn 2+-Based Pulsed Dipolar EPR Spectroscopy. J Phys Chem Lett 2023; 14:11421-11428. [PMID: 38084602 DOI: 10.1021/acs.jpclett.3c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Mg2+ ions play an essential part in stabilizing the tertiary structure of nucleic acids. While the importance of these ions is well documented, their localization and elucidation of their role in the structure and dynamics of nucleic acids are often challenging. In this work, pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) was used to localize two high affinity divalent metal ion binding sites in the tetracycline RNA aptamer with high accuracy. For this purpose, the aptamer was labeled at different positions with a semirigid nitroxide spin label and diamagnetic Mg2+ was replaced with paramagnetic Mn2+, which did not alter the folding process or ligand binding. Out of the several divalent metal ion binding sites that are known from the crystal structure, two binding sites with high affinity were detected: one that is located at the ligand binding center and another at the J1/2 junction of the RNA.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | | | - Subham Saha
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Ren P, Zhang T, Jain N, Ching HYV, Jaworski A, Barcaro G, Monti S, Silvestre-Albero J, Celorrio V, Chouhan L, Rokicińska A, Debroye E, Kuśtrowski P, Van Doorslaer S, Van Aert S, Bals S, Das S. An Atomically Dispersed Mn-Photocatalyst for Generating Hydrogen Peroxide from Seawater via the Water Oxidation Reaction (WOR). J Am Chem Soc 2023. [PMID: 37487055 DOI: 10.1021/jacs.3c03785] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 μM H2O2 in 7 h from alkaline water and up to 1800 μM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (•OH), and H2O2 was formed indirectly by the combination of two •OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.
Collapse
Affiliation(s)
- Peng Ren
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Noopur Jain
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - H Y Vincent Ching
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes, Area della Ricerca, Pisa I-56124, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Area della Ricerca, Pisa I-56124, Italy
| | | | - Veronica Celorrio
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Lata Chouhan
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Anna Rokicińska
- Department of Chemical Technology, Jagiellonian University, Krakow 30-387, Poland
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Piotr Kuśtrowski
- Department of Chemical Technology, Jagiellonian University, Krakow 30-387, Poland
| | | | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
3
|
Prokopiou G, Lee MD, Collauto A, Abdelkader EH, Bahrenberg T, Feintuch A, Ramirez-Cohen M, Clayton J, Swarbrick JD, Graham B, Otting G, Goldfarb D. Small Gd(III) Tags for Gd(III)–Gd(III) Distance Measurements in Proteins by EPR Spectroscopy. Inorg Chem 2018; 57:5048-5059. [DOI: 10.1021/acs.inorgchem.8b00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgia Prokopiou
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elwy H. Abdelkader
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marie Ramirez-Cohen
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jessica Clayton
- Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Bahrenberg T, Rosenski Y, Carmieli R, Zibzener K, Qi M, Frydman V, Godt A, Goldfarb D, Feintuch A. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:1-13. [PMID: 28834777 DOI: 10.1016/j.jmr.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D∼1150MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D∼550MHz) asa model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yael Rosenski
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Koby Zibzener
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, 33615 Bielefeld, Germany
| | - Veronica Frydman
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, 33615 Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
5
|
Wiegand T, Lacabanne D, Keller K, Cadalbert R, Lecoq L, Yulikov M, Terradot L, Jeschke G, Meier BH, Böckmann A. Solid-state NMR and EPR Spectroscopy of Mn 2+ -Substituted ATP-Fueled Protein Engines. Angew Chem Int Ed Engl 2017; 56:3369-3373. [PMID: 28191714 DOI: 10.1002/anie.201610551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 12/16/2022]
Abstract
Paramagnetic metal ions deliver structural information both in EPR and solid-state NMR experiments, offering a profitable synergetic approach to study bio-macromolecules. We demonstrate the spectral consequences of Mg2+ / Mn2+ substitution and the resulting information contents for two different ATP:Mg2+ -fueled protein engines, a DnaB helicase from Helicobacter pylori active in the bacterial replisome, and the ABC transporter BmrA, a bacterial efflux pump. We show that, while EPR spectra report on metal binding and provide information on the geometry of the metal centers in the proteins, paramagnetic relaxation enhancements identified in the NMR spectra can be used to localize residues at the binding site. Protein engines are ubiquitous and the methods described herein should be applicable in a broad context.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367, Lyon, France
| | | | | | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367, Lyon, France
| | - Maxim Yulikov
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367, Lyon, France
| | - Gunnar Jeschke
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367, Lyon, France
| |
Collapse
|
6
|
Wiegand T, Lacabanne D, Keller K, Cadalbert R, Lecoq L, Yulikov M, Terradot L, Jeschke G, Meier BH, Böckmann A. Festkörper-NMR- und EPR-Spektroskopie an Mn2+-substituierten ATP-angetriebenen Proteinmaschinen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry; Labex Ecofect; UMR 5086 CNRS/Université de Lyon; 69367 Lyon Frankreich
| | | | | | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry; Labex Ecofect; UMR 5086 CNRS/Université de Lyon; 69367 Lyon Frankreich
| | - Maxim Yulikov
- Physikalische Chemie; ETH Zürich; 8093 Zürich Schweiz
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry; Labex Ecofect; UMR 5086 CNRS/Université de Lyon; 69367 Lyon Frankreich
| | | | - Beat H. Meier
- Physikalische Chemie; ETH Zürich; 8093 Zürich Schweiz
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry; Labex Ecofect; UMR 5086 CNRS/Université de Lyon; 69367 Lyon Frankreich
| |
Collapse
|
7
|
Yang Y, Gong YJ, Litvinov A, Liu HK, Yang F, Su XC, Goldfarb D. Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins. Phys Chem Chem Phys 2017; 19:26944-26956. [DOI: 10.1039/c7cp04311b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The coordination mode of the metal ion in the spin label affects the distance distribution determined by DEER distance measurements.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Aleksei Litvinov
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Hong-Kai Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
8
|
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M. Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels. Phys Chem Chem Phys 2017; 19:17856-17876. [DOI: 10.1039/c7cp01524k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Valerie Mertens
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Anna I. Nalepa
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
9
|
Lawless MJ, Ghosh S, Cunningham TF, Shimshi A, Saxena S. On the use of the Cu2+–iminodiacetic acid complex for double histidine based distance measurements by pulsed ESR. Phys Chem Chem Phys 2017; 19:20959-20967. [DOI: 10.1039/c7cp02564e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+-based DEER signal of the double histidine motif was increased by a factor of two by understanding optimal loading conditions.
Collapse
Affiliation(s)
- M. J. Lawless
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Ghosh
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - T. F. Cunningham
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - A. Shimshi
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| |
Collapse
|
10
|
Meyer A, Schiemann O. PELDOR and RIDME Measurements on a High-Spin Manganese(II) Bisnitroxide Model Complex. J Phys Chem A 2016; 120:3463-72. [DOI: 10.1021/acs.jpca.6b00716] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas Meyer
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstr. 12, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstr. 12, Bonn, Germany
| |
Collapse
|
11
|
Demay-Drouhard P, Ching HYV, Akhmetzyanov D, Guillot R, Tabares LC, Bertrand HC, Policar C. A Bis-Manganese(II)-DOTA Complex for Pulsed Dipolar Spectroscopy. Chemphyschem 2016; 17:2066-78. [DOI: 10.1002/cphc.201600234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Paul Demay-Drouhard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| | - H. Y. Vincent Ching
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; Gif-sur-Yvette F-91198 France
| | - Dmitry Akhmetzyanov
- Goethe-University Frankfurt am Main; Institute of Physical and Theoretical Chemistry and; Center for Biomolecular Magnetic Resonance; Max von Laue Str. 7 60438 Frankfurt am Main Germany
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux O'Orsay; Université Paris-Sud, UMR CNRS 8182, Université Paris-Saclay; 91405 Orsay France
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; Gif-sur-Yvette F-91198 France
| | - Hélène C. Bertrand
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| |
Collapse
|
12
|
Ching HYV, Mascali FC, Bertrand HC, Bruch EM, Demay-Drouhard P, Rasia RM, Policar C, Tabares LC, Un S. The Use of Mn(II) Bound to His-tags as Genetically Encodable Spin-Label for Nanometric Distance Determination in Proteins. J Phys Chem Lett 2016; 7:1072-1076. [PMID: 26938795 DOI: 10.1021/acs.jpclett.6b00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A genetically encodable paramagnetic spin-label capable of self-assembly from naturally available components would offer a means for studying the in-cell structure and interactions of a protein by electron paramagnetic resonance (EPR). Here, we demonstrate pulse electron-electron double resonance (DEER) measurements on spin-labels consisting of Mn(II) ions coordinated to a sequence of histidines, so-called His-tags, that are ubiquitously added by genetic engineering to facilitate protein purification. Although the affinity of His-tags for Mn(II) was low (800 μM), Mn(II)-bound His-tags yielded readily detectable DEER time traces even at concentrations expected in cells. We were able to determine accurately the distance between two His-tag Mn(II) spin-labels at the ends of a rigid helical polyproline peptide of known structure, as well as at the ends of a completely cell-synthesized 3-helix bundle. This approach not only greatly simplifies the labeling procedure but also represents a first step towards using self-assembling metal spin-labels for in-cell distance measurements.
Collapse
Affiliation(s)
- H Y Vincent Ching
- Institute for Integrative Biology of the Cell (I2BC), Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198 , F-91191 Gif-sur-Yvette, France
| | - Florencia C Mascali
- Instituto de Biología Molecular y Celular de Rosario; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , 2000 Rosario, Argentina
| | - Hélène C Bertrand
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM , F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
| | - Eduardo M Bruch
- Institute for Integrative Biology of the Cell (I2BC), Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198 , F-91191 Gif-sur-Yvette, France
| | - Paul Demay-Drouhard
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM , F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
| | - Rodolfo M Rasia
- Instituto de Biología Molecular y Celular de Rosario; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , 2000 Rosario, Argentina
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM , F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
| | - Leandro C Tabares
- Institute for Integrative Biology of the Cell (I2BC), Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198 , F-91191 Gif-sur-Yvette, France
| | - Sun Un
- Institute for Integrative Biology of the Cell (I2BC), Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198 , F-91191 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Akhmetzyanov D, Ching HYV, Denysenkov V, Demay-Drouhard P, Bertrand HC, Tabares LC, Policar C, Prisner TF, Un S. RIDME spectroscopy on high-spin Mn2+ centers. Phys Chem Chem Phys 2016; 18:30857-30866. [DOI: 10.1039/c6cp05239h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A bis-MnDOTA complex was investigated by EPR dipolar spectroscopy. RIDME experiment revealed higher modulation depth compared to PELDOR and featured harmonics of the dipolar coupling frequency.
Collapse
Affiliation(s)
- D. Akhmetzyanov
- Goethe-University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - H. Y. V. Ching
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology, Université Paris-Saclay
- CEA
- CNRS UMR 9198
| | - V. Denysenkov
- Goethe-University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - P. Demay-Drouhard
- Département de Chimie
- Ecole Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
| | - H. C. Bertrand
- Département de Chimie
- Ecole Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
| | - L. C. Tabares
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology, Université Paris-Saclay
- CEA
- CNRS UMR 9198
| | - C. Policar
- Département de Chimie
- Ecole Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
| | - T. F. Prisner
- Goethe-University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - S. Un
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology, Université Paris-Saclay
- CEA
- CNRS UMR 9198
| |
Collapse
|
14
|
Collauto A, Frydman V, Lee MD, Abdelkader EH, Feintuch A, Swarbrick JD, Graham B, Otting G, Goldfarb D. RIDME distance measurements using Gd(iii) tags with a narrow central transition. Phys Chem Chem Phys 2016; 18:19037-49. [DOI: 10.1039/c6cp03299k] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methods based on pulse electron paramagnetic resonance allow measurement of the electron–electron dipolar coupling between two high-spin labels.
Collapse
Affiliation(s)
- A. Collauto
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - V. Frydman
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - M. D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - E. H. Abdelkader
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - A. Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - J. D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - B. Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - G. Otting
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - D. Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| |
Collapse
|
15
|
Keller K, Zalibera M, Qi M, Koch V, Wegner J, Hintz H, Godt A, Jeschke G, Savitsky A, Yulikov M. EPR characterization of Mn(ii) complexes for distance determination with pulsed dipolar spectroscopy. Phys Chem Chem Phys 2016; 18:25120-25135. [DOI: 10.1039/c6cp04884f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EPR properties of four Mn(ii) complexes and Tikhonov regularization-based analysis of RIDME data containing dipolar overtones are presented.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Michal Zalibera
- Max Planck Institut for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Vanessa Koch
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Julia Wegner
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Max Planck Institut for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
16
|
Cohen MR, Frydman V, Milko P, Iron MA, Abdelkader EH, Lee MD, Swarbrick JD, Raitsimring A, Otting G, Graham B, Feintuch A, Goldfarb D. Overcoming artificial broadening in Gd3+–Gd3+ distance distributions arising from dipolar pseudo-secular terms in DEER experiments. Phys Chem Chem Phys 2016; 18:12847-59. [DOI: 10.1039/c6cp00829a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double electron–electron resonance (DEER) is used to probe structure of Gd3+-tagged biomolecules by determining Gd3+–Gd3+ distances.
Collapse
Affiliation(s)
- Marie Ramirez Cohen
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - Veronica Frydman
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - Petr Milko
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - Mark A. Iron
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - Elwy H. Abdelkader
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | | | - Gottfried Otting
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Akiva Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 7610001
- Israel
| |
Collapse
|
17
|
Abdelkader EH, Yao X, Feintuch A, Adams LA, Aurelio L, Graham B, Goldfarb D, Otting G. Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags. JOURNAL OF BIOMOLECULAR NMR 2016; 64:39-51. [PMID: 26597990 DOI: 10.1007/s10858-015-0003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Δχ) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative approach, we used multiple Gd(3+)-Gd(3+) distances measured by double electron-electron resonance (DEER) experiments to define the metal position, allowing Δχ-tensor determinations from more robust 5-parameter fits that can be performed with a relatively sparse set of PCSs. Using this approach with the 32 kDa E. coli aspartate/glutamate binding protein (DEBP), we demonstrate a structural transition between substrate-bound and substrate-free DEBP, supported by PCSs generated by C3-Tm(3+) and C3-Tb(3+) tags attached to a genetically encoded p-azidophenylalanine residue. The significance of small PCSs was magnified by considering the difference between the chemical shifts measured with Tb(3+) and Tm(3+) rather than involving a diamagnetic reference. The integrative sparse data approach developed in this work makes poorly soluble proteins of limited stability amenable to structural studies in solution, without having to rely on cysteine mutations for tag attachment.
Collapse
Affiliation(s)
- Elwy H Abdelkader
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Xuejun Yao
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Luke A Adams
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
18
|
Martorana A, Yang Y, Zhao Y, Li QF, Su XC, Goldfarb D. Mn(ii) tags for DEER distance measurements in proteins via C–S attachment. Dalton Trans 2015; 44:20812-6. [DOI: 10.1039/c5dt04123f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tags for Mn2+–Mn2+ distance measurements in proteins with a short and stable linker that generate narrow distance distributions were developed.
Collapse
Affiliation(s)
- Andrea Martorana
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Yu Zhao
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Qing-Feng Li
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|