1
|
Williamson KI, Herr DJC, Mo Y. Mapping the correlations between bandgap, HOMO, and LUMO trends for meta substituted Zn-MOFs. J Comput Chem 2024; 45:2119-2127. [PMID: 38757907 DOI: 10.1002/jcc.27432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Bandgap is a key property that determines electrical and optical properties in materials. Modulating the bandgap thus is critical in developing novel materials particularly semiconductors with improved features. This study examines the bandgap, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) energy level trends in a metal organic framework, metal-organic framework 5 (MOF-5), as a function of Hammett substituent effect (with the constant σm in the meta-position of the benzene ring) and solvent dielectric effect (with the constant ε). Specifically, experimental design and response surface methodologies helped to assess the significance of trends and correlations between these molecular properties with σm and ε. While the HOMO and LUMO decrease with increasing σm, the LUMO exhibits greater sensitivity to the substituent's electron withdrawing capability. The relative difference in these trends helps to explain why the bandgap tends to decrease with increasing σm.
Collapse
Affiliation(s)
- Kyle I Williamson
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Daniel J C Herr
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
2
|
Gusarov S. Advances in Computational Methods for Modeling Photocatalytic Reactions: A Review of Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2119. [PMID: 38730926 PMCID: PMC11085804 DOI: 10.3390/ma17092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Photocatalysis is a fascinating process in which a photocatalyst plays a pivotal role in driving a chemical reaction when exposed to light. Its capacity to harness light energy triggers a cascade of reactions that lead to the formation of intermediate compounds, culminating in the desired final product(s). The essence of this process is the interaction between the photocatalyst's excited state and its specific interactions with reactants, resulting in the creation of intermediates. The process's appeal is further enhanced by its cyclic nature-the photocatalyst is rejuvenated after each cycle, ensuring ongoing and sustainable catalytic action. Nevertheless, comprehending the photocatalytic process through the modeling of photoactive materials and molecular devices demands advanced computational techniques founded on effective quantum chemistry methods, multiscale modeling, and machine learning. This review analyzes contemporary theoretical methods, spanning a range of lengths and accuracy scales, and assesses the strengths and limitations of these methods. It also explores the future challenges in modeling complex nano-photocatalysts, underscoring the necessity of integrating various methods hierarchically to optimize resource distribution across different scales. Additionally, the discussion includes the role of excited state chemistry, a crucial element in understanding photocatalysis.
Collapse
Affiliation(s)
- Sergey Gusarov
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
3
|
Panigrahi PK, Chandu B, Puvvada N. Recent Advances in Nanostructured Materials for Application as Gas Sensors. ACS OMEGA 2024; 9:3092-3122. [PMID: 38284032 PMCID: PMC10809240 DOI: 10.1021/acsomega.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Many different industries, including the pharmaceutical, medical engineering, clinical diagnostic, public safety, and food monitoring industries, use gas sensors. The inherent qualities of nanomaterials, such as their capacity to chemically or physically adsorb gas, and their great ratio of surface to volume make them excellent candidates for use in gas sensing technology. Additionally, the nanomaterial-based gas sensors have excellent selectivity, reproducibility, durability, and cost-effectiveness. This Review article offers a summary of the research on gas sensor devices based on nanomaterials of various sizes. The numerous nanomaterial-based gas sensors, their manufacturing procedures and sensing mechanisms, and most recent advancements are all covered in detail. In addition, evaluations and comparisons of the key characteristics of gas sensing systems made from various dimensional nanomaterials were done.
Collapse
Affiliation(s)
- Pravas Kumar Panigrahi
- Department
of Basic Science, Government College of
Engineering, Kalahandi, Odisha 766003, India
| | - Basavaiah Chandu
- Department
of Nanotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Nagaprasad Puvvada
- Department
of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh522237, India
| |
Collapse
|
4
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Muschielok C, Reiner A, Röß-Ohlenroth R, Kalytta-Mewes A, Volkmer D, Wixforth A, Oberhofer H. Combining Theory and Experiments To Study the Influence of Gas Sorption on the Conductivity Properties of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33662-33674. [PMID: 35848839 DOI: 10.1021/acsami.2c05127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With a view on adding to their use in trace gas sensing, we perform a combined experimental and theoretical study of the change of the conductivity of a metal organic framework (iron (1,2,3)-triazolate, Fe(ta)2) with the uptake of chemically inert gases. To align our first-principles calculations with experimental measurements, we perform an ensemble average over different microscopic arrangements of the gas molecules in the pores of the metal-organic framework (MOF). Up to the experimentally reachable limit of gas uptake, we find a good agreement between both approaches. Thus, we can employ theory to further interpret our experimental results in terms of changes to the parameters of the Bardeen-Shockley band theory, electron-phonon coupling (in the form of the deformation potential), bulk modulus, and carrier effective mass. We find the first of these to be most strongly influenced through the gas uptake. Furthermore, we find the changes to the deformation potential to strongly depend on the individual microscopic arrangements of molecules in the pores of the MOF. This hints at a possible synthetic engineering of the material, e.g., by closing off certain pores, for a stronger, more interpretable electric response upon gas sorption.
Collapse
Affiliation(s)
- Christoph Muschielok
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Alexander Reiner
- Chair for Experimental Physics I, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Richard Röß-Ohlenroth
- Chair of Solid State and Materials Chemistry, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Andreas Kalytta-Mewes
- Chair of Solid State and Materials Chemistry, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Member of Augsburg Centre for Innovative Technologies (ACIT), University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Achim Wixforth
- Chair for Experimental Physics I, Member of Augsburg Centre for Innovative Technologies (ACIT), University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85747 Garching, Germany
| |
Collapse
|
6
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, Hosseinifard M. Applications of novel composite UiO-66-NH 2/Melamine with phosphorous acid tags as a porous and efficient catalyst for the preparation of novel spiro-oxindoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03340b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new approach for the incorporation of phosphorous acid tags into a metal organic framework based on UiO-66-NH2/Melamine was introduced. This new catalyst was applied to the preparation of novel spiro-oxindoles under mild and green conditions.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department of Semiconductors, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
| |
Collapse
|
7
|
Allendorf MD, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Electronic Devices Using Open Framework Materials. Chem Rev 2020; 120:8581-8640. [DOI: 10.1021/acs.chemrev.0c00033] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
8
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
9
|
DMello ME, Sundaram NG, Singh A, Singh AK, Kalidindi SB. An amine functionalized zirconium metal–organic framework as an effective chemiresistive sensor for acidic gases. Chem Commun (Camb) 2019; 55:349-352. [DOI: 10.1039/c8cc06875e] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pore surface functionalization of a metal–organic framework (MOF) with an amine moiety has turned an innocent MOF into a chemiresistive sensor for acidic gases.
Collapse
Affiliation(s)
- Marilyn Esclance DMello
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bidalur post
- Devanahalli
- Bengaluru
| | - Nalini G. Sundaram
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bidalur post
- Devanahalli
- Bengaluru
| | - Akash Singh
- Materials Research Centre
- Indian Institute of Science
- Bangalore 560012
- India
| | - Abhishek K. Singh
- Materials Research Centre
- Indian Institute of Science
- Bangalore 560012
- India
| | - Suresh Babu Kalidindi
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bidalur post
- Devanahalli
- Bengaluru
| |
Collapse
|
10
|
Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem Soc Rev 2017; 46:3185-3241. [DOI: 10.1039/c7cs00122c] [Citation(s) in RCA: 800] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights the steps needed to bring the properties of MOFs from the chemical lab to the microelectronics fab.
Collapse
Affiliation(s)
- Ivo Stassen
- Centre for Surface Chemistry and Catalysis
- KU Leuven – University of Leuven
- B-3001 Leuven
- Belgium
- Imec
| | | | - Alec Talin
- Sandia National Laboratories
- Livermore
- USA
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
- Department of Chemistry
| | | | - Rob Ameloot
- Centre for Surface Chemistry and Catalysis
- KU Leuven – University of Leuven
- B-3001 Leuven
- Belgium
| |
Collapse
|
11
|
Schober C, Reuter K, Oberhofer H. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values. J Chem Phys 2016; 144:054103. [PMID: 26851904 DOI: 10.1063/1.4940920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or "flavors" of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer), we find that our new scheme gives improved electronic couplings for HAB7 (-6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (-15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.
Collapse
Affiliation(s)
- Christoph Schober
- Chair for Theoretical Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| |
Collapse
|
12
|
Yasin AS, Li J, Wu N, Musho T. Study of the inorganic substitution in a functionalized UiO-66 metal–organic framework. Phys Chem Chem Phys 2016; 18:12748-54. [PMID: 27098230 DOI: 10.1039/c5cp08070c] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of the band gap modulation in response to the inorganic substitution of the UiO-66 functionalized MOF.
Collapse
Affiliation(s)
- Alhassan Salman Yasin
- Department of Mechanical and Aerospace Engineering
- West Virginia University
- Morgantown
- USA
| | - Jiangtian Li
- Department of Mechanical and Aerospace Engineering
- West Virginia University
- Morgantown
- USA
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering
- West Virginia University
- Morgantown
- USA
| | - Terence Musho
- Department of Mechanical and Aerospace Engineering
- West Virginia University
- Morgantown
- USA
| |
Collapse
|