1
|
Lee Y, Cheng S, Ediger MD. High Density Two-Component Glasses of Organic Semiconductors Prepared by Physical Vapor Deposition. J Phys Chem Lett 2024:8085-8092. [PMID: 39087749 DOI: 10.1021/acs.jpclett.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Physical vapor deposition (PVD) is widely utilized for the production of organic semiconductor devices due to its ability to form thin layers with exceptional properties. Although the layers in the device usually consist of two or more components, there is limited understanding about the fundamental characteristics of such multicomponent vapor-deposited glasses. Here, spectroscopic ellipsometry was employed to characterize the densities, thermal stabilities, and optical properties of covapor deposited NPD and TPD glasses across the entire range of composition. We find that codeposited NPD and TPD form high density glasses with enhanced thermal stability. The dependences of density and stability upon substrate temperature are correlated, and the birefringence of the codeposited glasses is determined by the reduced substrate temperature of mixtures. Additionally, we observe that the transformation of a highly stable and dense two-component glass into its supercooled liquid initiates from the free surface and propagates into the bulk at a constant velocity, like single component PVD glasses. All of these features are consistent with the surface equilibration mechanism.
Collapse
Affiliation(s)
- Yejung Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shinian Cheng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Moratalla M, Rodríguez-López M, Rodríguez-Tinoco C, Rodríguez-Viejo J, Jiménez-Riobóo RJ, Ramos MA. Depletion of two-level systems in highly stable glasses with different molecular ordering. COMMUNICATIONS PHYSICS 2023; 6:274. [DOI: 10.1038/s42005-023-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 01/03/2025]
Abstract
AbstractRecent findings of structural glasses with extremely high kinetic and thermodynamic stability have attracted much attention. The question has been raised as to whether the well-known, low-temperature “glassy anomalies” (attributed to the presence of two-level systems [TLS] and the “boson peak”) persist or not in these ultrastable glasses of much lower configurational entropy. To resolve previous contradictory results, we study a particular type of ultrastable glass, TPD, which can be prepared by physical vapor deposition in a highly-stable state with different degrees of layering and molecular orientation, and also as a conventional glass and in crystalline state. After a thorough characterization of the different samples prepared, we have measured their specific heat down to 0.4 K. Whereas the conventional glass exhibits the typical glassy behaviour and the crystal the expected Debye cubic dependence at very low temperatures, a strong depletion of the TLS contribution is found in both kinds of ultrastable glass, regardless of their layering and molecular ordering.
Collapse
|
3
|
Herrero C, Ediger MD, Berthier L. Front propagation in ultrastable glasses is dynamically heterogeneous. J Chem Phys 2023; 159:114504. [PMID: 37724735 DOI: 10.1063/5.0168506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Upon heating, ultrastable glassy films transform into liquids via a propagating equilibration front, resembling the heterogeneous melting of crystals. A microscopic understanding of this robust phenomenology is, however, lacking because experimental resolution is limited. We simulate the heterogeneous transformation kinetics of ultrastable configurations prepared using the swap Monte Carlo algorithm, thus allowing a direct comparison with experiments. We resolve the liquid-glass interface both in space and in time as well as the underlying particle motion responsible for its propagation. We perform a detailed statistical analysis of the interface geometry and kinetics over a broad range of temperatures. We show that the dynamic heterogeneity of the bulk liquid is passed on to the front that propagates heterogeneously in space and intermittently in time. This observation allows us to relate the averaged front velocity to the equilibrium diffusion coefficient of the liquid. We suggest that an experimental characterization of the interface geometry during the heterogeneous devitrification of ultrastable glassy films could provide direct experimental access to the long-sought characteristic length scale of dynamic heterogeneity in bulk supercooled liquids.
Collapse
Affiliation(s)
- Cecilia Herrero
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
4
|
Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos MA, Rodriguez-Viejo J. Ultrastable glasses: new perspectives for an old problem. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:325-406. [DOI: 10.1007/s40766-022-00029-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2025]
Abstract
AbstractUltrastable glasses (mostly prepared from the vapor phase under optimized deposition conditions) represent a unique class of materials with low enthalpies and high kinetic stabilities. These highly stable and dense glasses show unique physicochemical properties, such as high thermal stability, improved mechanical properties or anomalous transitions into the supercooled liquid, offering unprecedented opportunities to understand many aspects of the glassy state. Their improved properties with respect to liquid-cooled glasses also open new prospects to their use in applications where liquid-cooled glasses failed or where not considered as usable materials. In this review article we summarize the state of the art of vapor-deposited (and other) ultrastable glasses with a focus on the mechanism of equilibration, the transformation to the liquid state and the low temperature properties. The review contains information on organic, metallic, polymeric and chalcogenide glasses and an updated list with relevant properties of all materials known today to form a stable glass.
Collapse
|
5
|
Zuhaib A, Urquhart SG. Internal molecular conformation of organic glasses: A NEXAFS study. J Chem Phys 2021; 155:034503. [PMID: 34293907 DOI: 10.1063/5.0054442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The origin of the exceptional stability of molecular glasses grown by physical vapor deposition (PVD) is not well understood. Differences in glass density have been correlated with thermodynamic stability for thin films of N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) grown by PVD at specific substrate temperatures below the glass transition temperature. However, the relationship between the internal conformation of glass molecules and the thermodynamic properties of molecular glasses is not well studied. We use carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy to examine different TPD sample preparations in which differences in the thermodynamic stability of the glass are known. Density functional theory simulations of the NEXAFS spectra of TPD allow us to attribute spectroscopic differences to changes in the internal conformation of the TPD molecule and relate this conformation to the stability of the TPD glass. This provides a direct experimental measurement of the internal conformation of molecules forming an organic glass.
Collapse
Affiliation(s)
- Amara Zuhaib
- Department of Chemistry, University of Saskatchewan, Treaty Six Territory, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Stephen G Urquhart
- Department of Chemistry, University of Saskatchewan, Treaty Six Territory, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
6
|
Minecka A, Hachuła B, Jurkiewicz K, Kamiński K, Paluch M, Kamińska E. High pressure aging studies on the low-molecular weight glass-forming pharmaceutical – Probucol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Tourlakis GM, Adamopoulos SAT, Gavra IK, Milpanis AA, Tsagri LF, Pachygianni ASG, Chatzikokolis SS, Tsekouras AA. Sign flipping of spontaneous polarization in vapour-deposited films of small polar organic molecules. Phys Chem Chem Phys 2021; 23:14352-14362. [PMID: 34169950 DOI: 10.1039/d1cp01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Films of polar molecules vapour-deposited on sufficiently cold substrates are not only amorphous, but also exhibit charge polarization across their thickness. This is an effect known for 50 years, but it is very poorly understood and no mechanism exists in the literature that can explain and predict it. We investigated this bulk effect for 18 small organic molecules as a function of substrate temperature (30-130 K). We found that, as a rule, alcohol films have the negative end on the vacuum side at all temperatures. Alkyl acetates and toluene showed positive voltages which reached a maximum around the middle of the temperature range investigated. Tetrahydrofuran showed positive voltages which dropped with increasing deposition temperature. Diethyl ether, acetone, propanal, and butanal showed positive film voltages at low temperatures, negative at intermediate temperatures and again positive voltages at higher temperatures. In all cases, film voltages were monitored during heating leading to film evaporation. Film voltages were irreversibly eliminated before film elimination, but voltage profiles during temperature ramps differed vastly depending on compound and deposition temperature. In general, there was a gradual voltage reduction, but propanal, butanal, and diethyl ether showed a change in voltage sign during temperature ramp in films deposited at low temperatures. All these data expand substantially the experimental information regarding spontaneous polarization in vapour-deposited films, but still require complementary measurements as well as numerical simulations for a detailed explanation of the phenomenon.
Collapse
Affiliation(s)
- Georgios M Tourlakis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Sotirios Alexandros T Adamopoulos
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Irini K Gavra
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Alexandros A Milpanis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Liveria F Tsagri
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Aikaterini Sofia G Pachygianni
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Stylianos S Chatzikokolis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Athanassios A Tsekouras
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| |
Collapse
|
8
|
Polyamorphism of vapor-deposited amorphous selenium in response to light. Proc Natl Acad Sci U S A 2020; 117:24076-24081. [PMID: 32934146 DOI: 10.1073/pnas.2009852117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enhanced surface mobility is critical in producing stable glasses during physical vapor deposition. In amorphous selenium (a-Se) both the structure and dynamics of the surface can be altered when exposed to above-bandgap light. Here we investigate the effect of light on the properties of vapor-deposited a-Se glasses at a range of substrate temperatures and deposition rates. We demonstrate that deposition both under white light illumination and in the dark results in thermally and kinetically stable glasses. Compared to glasses deposited in the dark, stable a-Se glasses formed under white light have reduced thermal stability, as measured by lower density change, but show significantly improved kinetic stability, measured as higher onset temperature for transformation. While light induces enhanced mobility that penetrates deep into the surface, resulting in lower density during vapor deposition, it also acts to form more networked structures at the surface, which results in a state that is kinetically more stable with larger optical birefringence. We demonstrate that the structure formed during deposition with light is a state that is not accessible through liquid quenching, aging, or vapor deposition in the dark, indicating the formation of a unique amorphous solid state.
Collapse
|
9
|
Bishop C, Li Y, Toney MF, Yu L, Ediger MD. Molecular Orientation for Vapor-Deposited Organic Glasses Follows Rate-Temperature Superposition: The Case of Posaconazole. J Phys Chem B 2020; 124:2505-2513. [DOI: 10.1021/acs.jpcb.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yuhui Li
- School of Pharmacy, University of Wisconsin−Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael F. Toney
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Lian Yu
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin−Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Vila-Costa A, Ràfols-Ribé J, González-Silveira M, Lopeandia AF, Abad-Muñoz L, Rodríguez-Viejo J. Nucleation and Growth of the Supercooled Liquid Phase Control Glass Transition in Bulk Ultrastable Glasses. PHYSICAL REVIEW LETTERS 2020; 124:076002. [PMID: 32142312 DOI: 10.1103/physrevlett.124.076002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
We report the anomalous bulk transformation of vapor deposited stable glasses into the liquid state. The transformation proceeds through two competing parallel processes: partial rejuvenation of the stable glass and nucleation and growth of liquid patches within the glass. The kinetics of the transformation extracted from heat capacity curves after isothermal runs is dominated by the heterogeneous nucleation and growth process that initiates at preexisting seeds and propagates radially at a velocity proportional to the alpha relaxation time. Remarkably, the distance between the activation seeds is independent of temperature within experimental uncertainty and amounts to several micrometers, a value in close agreement with the crossover length for TPD glasses. We speculate the initiation sites for the transformation of the glass into the supercooled liquid are localized regions of lower stability (or density).
Collapse
Affiliation(s)
- A Vila-Costa
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - J Ràfols-Ribé
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M González-Silveira
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - A F Lopeandia
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ll Abad-Muñoz
- Instituto de Microelectrónica de Barcelona-Centre Nacional de Microelectrònica, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - J Rodríguez-Viejo
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
11
|
Flenner E, Berthier L, Charbonneau P, Fullerton CJ. Front-Mediated Melting of Isotropic Ultrastable Glasses. PHYSICAL REVIEW LETTERS 2019; 123:175501. [PMID: 31702270 DOI: 10.1103/physrevlett.123.175501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Ultrastable vapor-deposited glasses display uncommon material properties. Most remarkably, upon heating they are believed to melt via a liquid front that originates at the free surface and propagates over a mesoscopic crossover length, before crossing over to bulk melting. We combine swap Monte Carlo with molecular dynamics simulations to prepare and melt isotropic amorphous films of unprecedendtly high kinetic stability. We are able to directly observe both bulk and front melting, and the crossover between them. We measure the front velocity over a broad range of conditions, and a crossover length scale that grows to nearly 400 particle diameters in the regime accessible to simulations. Our results disentangle the relative roles of kinetic stability and vapor deposition in the physical properties of stable glasses.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins Colorado 80523, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Christopher J Fullerton
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Bagchi K, Gujral A, Toney MF, Ediger MD. Generic packing motifs in vapor-deposited glasses of organic semiconductors. SOFT MATTER 2019; 15:7590-7595. [PMID: 31468038 DOI: 10.1039/c9sm01155b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the structure of vapor-deposited glasses of five common organic semiconductors as a function of substrate temperature during deposition, using synchrotron X-ray scattering. For deposition at a substrate temperature of ∼0.8Tg (where Tg is the glass transition temperature), we find a generic tendency towards "face-on" packing in glasses of anisotropic molecules. At higher substrate temperature however this generic behavior breaks down; glasses of rod-shaped molecules exhibit a more pronounced tendency for end-on packing. Our study provides guidelines to create face-on and end-on packing motifs in organic glasses, which can promote efficient charge transport in OLED and OFET devices respectively.
Collapse
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - Ankit Gujral
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | - M F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
13
|
Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia JC, Rodríguez-Viejo J. Surface-Bulk Interplay in Vapor-Deposited Glasses: Crossover Length and the Origin of Front Transformation. PHYSICAL REVIEW LETTERS 2019; 123:155501. [PMID: 31702315 DOI: 10.1103/physrevlett.123.155501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Thin film stable glasses transform into a liquid by a moving front that propagates from surfaces or interfaces with higher mobility. We use calorimetric data of vapor-deposited glasses of different thicknesses and stabilities to identify the role of glassy and liquid dynamics on the transformation process. By invoking the existence of an ultrathin intermediate layer whose transformation strongly depends on the properties of both the liquid and the glass, we show that the recovery to equilibrium is driven by the mismatch in the dynamics between glass and liquid. The lifetime of this intermediate layer associated with the moving front is the geometric mean between the bulk transformation time and the alpha relaxation time. Within this view, we explain the observed dependencies of the growth front velocity and the crossover length with both stability and temperature. Extrapolation of these results points towards ordinary thin film glasses transforming via a frontlike transformation mechanism if heated sufficiently fast, establishing a close connection between vapor-deposited and liquid-cooled glasses.
Collapse
Affiliation(s)
- Cristian Rodríguez-Tinoco
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Gonzalez-Silveira
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Ràfols-Ribé
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Vila-Costa
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julio Cesar Martinez-Garcia
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier Rodríguez-Viejo
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Vapor deposition of a nonmesogen prepares highly structured organic glasses. Proc Natl Acad Sci U S A 2019; 116:21421-21426. [PMID: 31527259 DOI: 10.1073/pnas.1908445116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.
Collapse
|
15
|
Bishop C, Gujral A, Toney MF, Yu L, Ediger MD. Vapor-Deposited Glass Structure Determined by Deposition Rate-Substrate Temperature Superposition Principle. J Phys Chem Lett 2019; 10:3536-3542. [PMID: 31177780 DOI: 10.1021/acs.jpclett.9b01377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We show that deposition rate substantially affects the anisotropic structure of thin glassy films produced by physical vapor deposition. Itraconazole, a glass-forming liquid crystal, was deposited at rates spanning 3 orders of magnitude over a 25 K range of substrate temperatures, and structure was characterized by ellipsometry and X-ray scattering. Both the molecular orientation and the spacing of the smectic layers obey deposition rate-substrate temperature superposition, such that lowering the deposition rate is equivalent to raising the substrate temperature. We identify two different surface relaxations that are responsible for structural order in the vapor-deposited glasses and find that the process controlling molecular orientation is accelerated by more than 3 orders of magnitude at the surface relative to the bulk. The identification of distinct surface processes responsible for anisotropic structural features in vapor-deposited glasses will enable more precise control over the structure of glassy materials used in organic electronics.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ankit Gujral
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory, Menlo Park , California 94025 , United States
| | - Lian Yu
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Mark D Ediger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
16
|
Riechers B, Guiseppi-Elie A, Ediger MD, Richert R. Ultrastable and polyamorphic states of vapor-deposited 2-methyltetrahydrofuran. J Chem Phys 2019; 150:214502. [DOI: 10.1063/1.5091796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Birte Riechers
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - A. Guiseppi-Elie
- Department of Biomedical Engineering, The Dwight Look College of Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
17
|
Samanta S, Huang G, Gao G, Zhang Y, Zhang A, Wolf S, Woods CN, Jin Y, Walsh PJ, Fakhraai Z. Exploring the Importance of Surface Diffusion in Stability of Vapor-Deposited Organic Glasses. J Phys Chem B 2019; 123:4108-4117. [PMID: 30998844 DOI: 10.1021/acs.jpcb.9b01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stable glasses are formed during physical vapor deposition (PVD), through the surface-mediated equilibration process. Understanding surface relaxation dynamics is important in understanding the details of this process. Direct measurements of the surface relaxation times in molecular glass systems are challenging. As such, surface diffusion measurements have been used in the past as a proxy for the surface relaxation process. In this study, we show that the absence of enhanced surface diffusion is not a reliable predictor of reduced ability to produce stable glasses. To demonstrate, we have prepared stable glasses (SGs) from two structurally similar organic molecules, 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene (TNB) and 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene (α,α-A), with similar density increase and improved kinetic stability as compared to their liquid-quenched (LQ) counterparts. The surface diffusion values of these glasses were measured both in the LQ and SG states below their glass transition temperatures ( Tgs) using gold nanorod probes. While TNB shows enhanced surface diffusion in both SG and LQ states, no significant surface Tg diffusion is observed on the surface of α,α-A within our experimental time scales. However, isothermal dewetting experiments on ultrathin films of both molecules below Tg indicate the existence of enhanced dynamics in ultrathin films for both molecules, indirectly showing the existence of an enhanced mobile surface layer. Both films produce stable glasses, which is another indication for the existence of the mobile surface layer. Our results suggest that lateral surface diffusion may not be a good proxy for enhanced surface relaxation dynamics required to produce stable glasses, and thus, other types of measurements to directly probe the surface relaxation times may be necessary.
Collapse
Affiliation(s)
- Subarna Samanta
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Georgia Huang
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Gui Gao
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Yue Zhang
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Aixi Zhang
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Sarah Wolf
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Connor N Woods
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Yi Jin
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Patrick J Walsh
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Zahra Fakhraai
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
18
|
Cubeta US, Sadtchenko V. Glass softening kinetics in the limit of high heating rates. J Chem Phys 2019; 150:094508. [DOI: 10.1063/1.5046304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ulyana S. Cubeta
- Chemistry Department, The George Washington University, Washington, District of Columbia 20052, USA
| | - Vlad Sadtchenko
- Chemistry Department, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
19
|
Yoo D, Song H, Youn Y, Jeon SH, Cho Y, Han S. A molecular dynamics study on the interface morphology of vapor-deposited amorphous organic thin films. Phys Chem Chem Phys 2019; 21:1484-1490. [PMID: 30607407 DOI: 10.1039/c8cp05294h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfaces between amorphous organic layers play an important role in the efficiency and lifetime of organic light emitting diodes (OLEDs). However, an atomistic understanding of the interface morphology is still poor. In this study, we theoretically investigate the interfacial structure of amorphous organic films using molecular dynamics simulations that mimic vapor-deposition processes. We find that molecularly sharp interfaces are formed by the vapor-deposition process as the interface thickness spans only a mono- or double-layer in terms of lie-down geometry. Interestingly, the interface is more diffusive into the upper layer due to asymmetric interdiffusion during the vapor-deposition process, which is well described by a simple random-walk model. Additionally, we investigate the change in the molecular orientation of interdiffused molecules, which is crucial for device performance.
Collapse
Affiliation(s)
- Dongsun Yoo
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
| | | | | | | | | | | |
Collapse
|
20
|
Ràfols-Ribé J, Vila-Costa A, Rodríguez-Tinoco C, Lopeandía AF, Rodríguez-Viejo J, Gonzalez-Silveira M. Kinetic arrest of front transformation to gain access to the bulk glass transition in ultrathin films of vapour-deposited glasses. Phys Chem Chem Phys 2018; 20:29989-29995. [PMID: 30480265 DOI: 10.1039/c8cp06264a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Physical vapour deposition has emerged as the technique to obtain glasses of unbeatable stability. However, vapour deposited glasses exhibit a different transformation mechanism to ordinary glasses produced from liquid. Vapour deposited glasses of different thermodynamic stability, from ultrastable to those similar to ordinary glasses, transform into the liquid state via front propagation starting at the most mobile surfaces/interfaces, at least for the first stages of the transformation, eventually dynamiting the high thermal stability achieved for some of these glasses. A previous study showed that it was possible to avoid this transformation front by capping the films with a higher Tg material. We show here fast calorimetry measurements on TPD and IMC vapour deposited glasses capped respectively with TCTA and TPD. This capped configuration is very effective in suppressing the heterogeneous transformation of the stable glasses into the supercooled liquid and shifts the devitrification temperature to much higher values, where the bulk homogeneous mechanism becomes active. This approach may be useful to further study the bulk glass transition in thin films.
Collapse
Affiliation(s)
- Joan Ràfols-Ribé
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Barcelona, 08193 - Bellaterra, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Emergence of a substrate-temperature-dependent dielectric process in a prototypical vapor deposited hole-transport glass. Sci Rep 2018; 8:1380. [PMID: 29358585 PMCID: PMC5778027 DOI: 10.1038/s41598-018-19604-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
Since the discovery of ultrastability, vapor deposition has emerged as a relevant tool to further understand the nature of glasses. By this route, the density and average orientation of glasses can be tuned by selecting the proper deposition conditions. Dielectric spectroscopy, on the other hand, is a basic technique to study the properties of glasses at a molecular level, probing the dynamics of dipoles or charge carriers. Here, and for the first time, we explore the dielectric behavior of vapor deposited N,N-Diphenyl-N,N’bis(methylphenyl)-1,1′-biphenyl-4,4′-diamines (TPD), a prototypical hole-transport material, prepared at different deposition temperatures. We report the emergence of a new relaxation process which is not present in the ordinary glass. We associate this process to the Maxwell-Wagner polarization observed in heterogeneous systems, and induced by the enhanced mobility of charge carriers in the more ordered vapor deposited glasses. Furthermore, the associated activation energy establishes a clear distinction between two families of glasses, depending on the selected substrate-temperature range. This finding positions dielectric spectroscopy as a unique tool to investigate the structural and electronic properties of charge transport materials and remarks the importance of controlling the deposition conditions, historically forgotten in the preparation of optoelectronic devices.
Collapse
|
22
|
Rodríguez-Tinoco C, Rams-Baron M, Ngai KL, Jurkiewicz K, Rodríguez-Viejo J, Paluch M. Secondary relaxation in ultrastable etoricoxib: evidence of correlation with structural relaxation. Phys Chem Chem Phys 2018; 20:3939-3945. [DOI: 10.1039/c7cp06445d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We show an unprecedented connection between secondary and structural relaxations in ultrastable etoricoxib in exactly the same manner as in the ordinary glass, manifested through different properties, such as aging and devitrification.
Collapse
Affiliation(s)
- Cristian Rodríguez-Tinoco
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Marzena Rams-Baron
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - K. L. Ngai
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
| | - Karolina Jurkiewicz
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Javier Rodríguez-Viejo
- Group of Nanomaterials and Microsystems
- Physics Department
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Marian Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| |
Collapse
|
23
|
Ngai KL, Paluch M, Rodríguez-Tinoco C. Why is the change of the Johari–Goldstein β-relaxation time by densification in ultrastable glass minor? Phys Chem Chem Phys 2018; 20:27342-27349. [DOI: 10.1039/c8cp05107k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling-Model-based theoretical explanation of the minor change of JG β-relaxation achieved by ultrastability in contrast to the dramatic change in α-relaxation.
Collapse
Affiliation(s)
| | - Marian Paluch
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Physics
- University of Silesia
| | - Cristian Rodríguez-Tinoco
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Physics
- University of Silesia
| |
Collapse
|
24
|
Affiliation(s)
- M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison,
1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
Yoon H, Koh YP, Simon SL, McKenna GB. An Ultrastable Polymeric Glass: Amorphous Fluoropolymer with Extreme Fictive Temperature Reduction by Vacuum Pyrolysis. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Heedong Yoon
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| | - Yung P. Koh
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| | - Sindee L. Simon
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| |
Collapse
|
26
|
Laventure A, Gujral A, Lebel O, Pellerin C, Ediger MD. Influence of Hydrogen Bonding on the Kinetic Stability of Vapor-Deposited Glasses of Triazine Derivatives. J Phys Chem B 2017; 121:2350-2358. [DOI: 10.1021/acs.jpcb.6b12676] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Audrey Laventure
- Département
de chimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Ankit Gujral
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Olivier Lebel
- Department
of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada
| | - Christian Pellerin
- Département
de chimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - M. D. Ediger
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Gómez J, Gujral A, Huang C, Bishop C, Yu L, Ediger MD. Nematic-like stable glasses without equilibrium liquid crystal phases. J Chem Phys 2017; 146:054503. [DOI: 10.1063/1.4974829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jaritza Gómez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ankit Gujral
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chengbin Huang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
28
|
Ràfols-Ribé J, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-Viejo J. The role of thermodynamic stability in the characteristics of the devitrification front of vapour-deposited glasses of toluene. Phys Chem Chem Phys 2017; 19:11089-11097. [DOI: 10.1039/c7cp00741h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glass stability and molecular shape affect the transformation mechanism of vapour deposited glasses.
Collapse
Affiliation(s)
- Joan Ràfols-Ribé
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Marta Gonzalez-Silveira
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Cristian Rodríguez-Tinoco
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Javier Rodríguez-Viejo
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| |
Collapse
|
29
|
Rodríguez-Tinoco C, Ràfols-Ribé J, González-Silveira M, Rodríguez-Viejo J. Relaxation dynamics of glasses along a wide stability and temperature range. Sci Rep 2016; 6:35607. [PMID: 27767071 PMCID: PMC5073287 DOI: 10.1038/srep35607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
While lots of measurements describe the relaxation dynamics of the liquid state, experimental data of the glass dynamics at high temperatures are much scarcer. We use ultrafast scanning calorimetry to expand the timescales of the glass to much shorter values than previously achieved. Our data show that the relaxation time of glasses follows a super-Arrhenius behaviour in the high-temperature regime above the conventional devitrification temperature heating at 10 K/min. The liquid and glass states can be described by a common VFT-like expression that solely depends on temperature and limiting fictive temperature. We apply this common description to nearly-isotropic glasses of indomethacin, toluene and to recent data on metallic glasses. We also show that the dynamics of indomethacin glasses obey density scaling laws originally derived for the liquid. This work provides a strong connection between the dynamics of the equilibrium supercooled liquid and non-equilibrium glassy states.
Collapse
Affiliation(s)
- C. Rodríguez-Tinoco
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - J. Ràfols-Ribé
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - J. Rodríguez-Viejo
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
30
|
Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Sci Rep 2016; 6:34296. [PMID: 27694814 PMCID: PMC5046104 DOI: 10.1038/srep34296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters.
Collapse
|
31
|
Chua YZ, Tylinski M, Tatsumi S, Ediger MD, Schick C. Glass transition and stable glass formation of tetrachloromethane. J Chem Phys 2016; 144:244503. [PMID: 27369523 DOI: 10.1063/1.4954665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Physical vapor deposition (PVD) has been used to prepare organic glasses with very high kinetic stability and it has been suggested that molecular anisotropy is a prerequisite for stable glass formation. Here we use PVD to prepare glasses of tetrachloromethane, a simple organic molecule with a nearly isotropic molecular structure. In situ AC nanocalorimetry was used to characterize the vapor-deposited glasses. Glasses of high kinetic stability were produced by deposition near 0.8 Tg. The isothermal transformation of the vapor-deposited glasses into the supercooled liquid state gave further evidence that tetrachloromethane forms glasses with high kinetic stability, with the transformation time exceeding the structural relaxation time of the supercooled liquid by a factor of 10(3). The glass transition temperature of liquid-cooled tetrachloromethane is determined as Tg ≈ 78 K, which is different from previously reported values. The frequency dependence of the glass transition was also determined and the fragility was estimated as m ≈ 118. The successful formation of PVD glasses of tetrachloromethane which have high kinetic stability argues that molecular asymmetry is not a prerequisite for stable glass formation.
Collapse
Affiliation(s)
- Y Z Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - M Tylinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - S Tatsumi
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - C Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
32
|
Jack RL, Berthier L. The melting of stable glasses is governed by nucleation-and-growth dynamics. J Chem Phys 2016; 144:244506. [PMID: 27369526 DOI: 10.1063/1.4954327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We discuss the microscopic mechanisms by which low-temperature amorphous states, such as ultrastable glasses, transform into equilibrium fluids, after a sudden temperature increase. Experiments suggest that this process is similar to the melting of crystals, thus differing from the behaviour found in ordinary glasses. We rationalize these observations using the physical idea that the transformation process takes place close to a "hidden" equilibrium first-order phase transition, which is observed in systems of coupled replicas. We illustrate our views using simulation results for a simple two-dimensional plaquette spin model, which is known to exhibit a range of glassy behaviour. Our results suggest that nucleation-and-growth dynamics, as found near ordinary first-order transitions, is also the correct theoretical framework to analyse the melting of ultrastable glasses. Our approach provides a unified understanding of multiple experimental observations, such as propagating melting fronts, large kinetic stability ratios, and "giant" dynamic length scales. We also provide a comprehensive discussion of available theoretical pictures proposed in the context of ultrastable glass melting.
Collapse
Affiliation(s)
- Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
33
|
Jiang J, Walters DM, Zhou D, Ediger MD. Substrate temperature controls molecular orientation in two-component vapor-deposited glasses. SOFT MATTER 2016; 12:3265-3270. [PMID: 26922903 DOI: 10.1039/c6sm00262e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glass transition temperature of the mixture. These findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid.
Collapse
Affiliation(s)
- J Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|