1
|
Xie S, Erfani A, Manouchehri S, Ramsey J, Aichele C. Aerosolization of poly(sulfobetaine) microparticles that encapsulate therapeutic antibodies. BIOMATERIALS ADVANCES 2024; 160:213839. [PMID: 38579521 DOI: 10.1016/j.bioadv.2024.213839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Pulmonary delivery of protein therapeutics poses significant challenges that have not been well addressed in the research literature or practice. In fact, there is currently only one commercial protein therapeutic that is delivered through aerosolization and inhalation. In this study, we propose a drug delivery strategy that enables a high-concentration dosage for the pulmonary delivery of antibodies as an aerosolizable solid powder with desired stability. We utilized zwitterionic polymers for their promising properties as drug delivery vehicles and synthesized swellable, biodegradable poly(sulfo-betaine) (pSB) microparticles. The microparticles were loaded with Immunoglobulin G (IgG) as a model antibody. We quantified the microparticle size and morphology, and the particles were found to have an average diameter of 1.6 μm, falling within the optimal range (~1-5 μm) for pulmonary drug delivery. In addition, we quantified the impact of the crosslinker to monomer ratio on particle morphology and drug loading capacity. The results showed that there is a trade-off between desired morphology and drug loading capacity as the crosslinker density increases. In addition, the particles were aerosolized, and our data indicated that the particles remained intact and retained their initial morphology and size after aerosolization. The combination of morphology, particle size, antibody loading capacity, low cytotoxicity, and ease of aerosolization support the potential use of these particles for pulmonary delivery of protein therapeutics.
Collapse
Affiliation(s)
- Songpei Xie
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Amir Erfani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joshua Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Clint Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
2
|
Lim J, Matsuoka H, Kinoshita Y, Yusa SI, Saruwatari Y. The Effect of Block Ratio and Structure on the Thermosensitivity of Double and Triple Betaine Block Copolymers. Molecules 2024; 29:390. [PMID: 38257304 PMCID: PMC10820771 DOI: 10.3390/molecules29020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
AB-type and BAB-type betaine block copolymers composed of a carboxybetaine methacrylate and a sulfobetaine methacrylate, PGLBT-b-PSPE and PSPE-b-PGLBT-b-PSPE, respectively, were synthesized by one-pot RAFT polymerization. By optimizing the concentration of the monomer, initiator, and chain transfer agent, block extension with precise ratio control was enabled and a full conversion (~99%) of betaine monomers was achieved at each step. Two sets (total degree of polymerization: ~300 and ~600) of diblock copolymers having four different PGLBT:PSPE ratios were prepared to compare the influence of block ratio and molecular weight on the temperature-responsive behavior in aqueous solution. A turbidimetry and dynamic light scattering study revealed a shift to higher temperatures of the cloud point and micelle formation by increasing the ratio of PSPE, which exhibit upper critical solution temperature (UCST) behavior. PSPE-dominant diblocks created spherical micelles stabilized by PGLBT motifs, and the transition behavior diminished by decreasing the PSPE ratio. No particular change was found in the diblocks that had an identical AB ratio. This trend reappeared in the other set whose entire molecular weight approximately doubled, and each transition point was not recognizably impacted by the total molecular weight. For triblocks, the PSPE double ends provided a higher probability of interchain attractions and resulted in a more turbid solution at higher temperatures, compared to the diblocks which had similar block ratios and molecular weights. The intermediates assumed as network-like soft aggregates eventually rearranged to monodisperse flowerlike micelles. It is expected that the method for obtaining well-defined betaine block copolymers, as well as the relationship of the block ratio and the chain conformation to the temperature-responsive behavior, will be helpful for designing betaine-based polymeric applications.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Yusuke Kinoshita
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan;
| |
Collapse
|
3
|
Jin X, Fan Z, Liu Y, Jiang C, Zhang W, Yin P, Sun T. Correlation of Structure and Dynamics Behavior in Polyzwitterions: From Concentrated Solution to Gel-Like State. Macromol Rapid Commun 2023; 44:e2300418. [PMID: 37625423 DOI: 10.1002/marc.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Indexed: 08/27/2023]
Abstract
The dynamic behaviors of polyzwitterions, poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate) (PSBP), are investigated using dynamic light scattering, small angle X-ray scattering, and rheology. The findings reveal two relaxation modes, including a fast and a slow mode, which are observed in both solution state and gel-like state, with varying polyzwitterion concentration (CP ) and NaCl concentration (CNaCl ). As CP and CNaCl increasing, a slower slow mode and a faster fast mode are observed. The fast mode corresponds to the diffusion of chains, while the slow mode arises from chain aggregations. In solutions, the slow mode is dominated by the diffusion of chain aggregations. However, in the gel-like state, the "cage network" traps aggregations more densely, leading to their dynamic behavior being dominated by enhanced topological entanglements and ionic interactions. This difference highlights the unique nature of the slow relaxation mode between concentrated solution and gel-like state, arising from changes in the average distance between chain aggregations resulting from increased CP and CNaCl concentrations.
Collapse
Affiliation(s)
- Xiaolin Jin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhiwei Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Chuanxia Jiang
- Guangdong Marubi Biotechnology Co., Ltd., No 92 Banhe Road, Huangpu District, Guangzhou, 510700, China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Pickett PD, Ma Y, Prabhu VM. Polyzwitterion fast and slow mode behavior are coupled to phase separation as observed by dynamic laser light scattering. J Chem Phys 2023; 159:104902. [PMID: 37694748 DOI: 10.1063/5.0162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
A model zwitterionic polysulfobetaine, poly(3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate) (pAPAPS), phase separates upon cooling and exhibits an upper critical solution temperature (UCST) behavior with no added salt in deuterium oxide solutions. Dynamic light scattering measurements indicate the presence of distinct fast and slow diffusive modes, where the fast mode is interpreted as a collective diffusion coefficient and the slow mode is attributed to the diffusion of multi-chain dynamic clusters. The relative population of fast and slow modes varies systematically with temperature and concentration. A clustering temperature (T*) was assigned when the slow mode first appeared upon cooling. The slow mode then increases in relative scattering amplitude as the phase boundary is approached. The fast mode exhibits a concentration dependence above T* consistent with the virial expansion in the collective diffusion. The sign of the virial coefficient (kd) is negative, even in the good solvent region above the expected Flory temperature (Θ ≈ 39 °C), a behavior distinct from synthetic neutral polymers in organic solvents. The onset of multi-chain clustering at T < T* coincides with the poor solvent regime (T < Θ). Attractive dipolar interactions due to the zwitterionic sulfobetaine groups in pAPAPS are suggested as the origin of the multi-chain clusters with no salt. Upon the addition of 100 mM NaCl, the slow mode is suppressed, and the hydrodynamic radius is consistent with polyzwitterion chain dimensions in a dilute solution. We find that concentration dependent diffusion is highly linked to the theta temperature and the emergence of dynamic clusters as the polymer goes from good to poor solvent on approach to the UCST. The slow mode in the semidilute regime is reported along with preliminary small-angle neutron scattering data that show salt reduces clustering and leads to predominantly chain scattering.
Collapse
Affiliation(s)
- Phillip D Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
5
|
Liu Z, Keum JK, Li T, Chen J, Hong K, Wang Y, Sumpter BG, Advincula R, Kumar R. Anti-polyelectrolyte and polyelectrolyte effects on conformations of polyzwitterionic chains in dilute aqueous solutions. PNAS NEXUS 2023; 2:pgad204. [PMID: 37424896 PMCID: PMC10323900 DOI: 10.1093/pnasnexus/pgad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Polyzwitterions (PZs) are considered as model synthetic analogs of intrinsically disordered proteins. Based on this analogy, PZs in dilute aqueous solutions are expected to attain either globular (i.e. molten, compact) or random coil conformations. Addition of salt is expected to open these conformations. To the best of our knowledge, these hypotheses about conformations of PZs have never been verified. In this study, we test these hypotheses by studying effects of added salt [potassium bromide (KBr)] on gyration and hydrodynamic radii of poly(sulfobetaine methacrylate) in dilute aqueous solutions using dynamic light scattering and small-angle X-ray scattering, respectively. Effects of zwitteration are revealed by direct comparisons of the PZs with the polymers of the same backbone but containing (1) no explicit charges on side groups such as poly(2-dimethylaminoethyl methacrylate)s and (2) explicit cationic side groups with tertiary amino bromide pendants. Zeta-potential measurements, transmission electron microscopy, and ab initio molecular dynamics simulations reveal that the PZs acquire net positive charge in near salt-free conditions due to protonation but retain coiled conformations. Added KBr leads to nonmonotonic changes exhibiting an increase followed by a decrease in radius of gyration (and hydrodynamic radius), which are called antipolyelectrolyte and polyelectrolyte effects, respectively. Charge regulation and screening of charge-charge interactions are discussed in relation to the antipolyelectrolyte and polyelectrolyte effects, respectively, which highlight the importance of salt in affecting net charge and conformations of PZs.
Collapse
Affiliation(s)
| | | | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rigoberto Advincula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
6
|
Zhang W, Ma Y, Posey ND, Lueckheide MJ, Prabhu VM, Douglas JF. Combined Simulation and Experimental Study of Polyampholyte Solution Properties: Effects of Charge Ratio, Hydrophobic Groups, and Polymer Concentration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nicholas D. Posey
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael J. Lueckheide
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
7
|
Pickett PD, Ma Y, Lueckheide M, Mao Y, Prabhu VM. Temperature dependent single-chain structure of poly[3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate] via small-angle neutron scattering. J Chem Phys 2022; 156:214904. [DOI: 10.1063/5.0093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Responsive polyzwitterionic materials have become important for a range of applications such as environmental remediation and targeted drug delivery. Much is known about the macroscopic phase-behaviors of such materials, but how the smaller scale single-chain structures of polyzwitterions respond to external stimuli is not well understood, especially at temperatures close to their phase boundaries. Such chain conformation responses are important in directing larger-scale associative properties. Here, we study the temperature dependent single-chain structure of a model polysulfobetaine, poly[3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate], using small angle neutron scattering. In the absence of salt, we find that temperature has a large effect on solvent quality with a decreasing trend from good solvent conditions at 50 °C to poor solvent at 10 °C (a temperature just above the cloud point of 7.6 °C) and an estimated theta temperature of 39 °C. When 100 mM NaCl is present, the solvent quality is good with weak temperature dependence. Without salt present, the polymer chain appears to have a nearly Gaussian coil conformation and the backbone becomes slightly more rigid as the temperature is lowered to the cloud point as determined by the Debye-local rod model on a Kratky plot. The addition of salt has a notable effect on the intra-chain correlations where an increase in chain dimensions to a swollen coil conformation and an increase in chain rigidity is observed at 100 mM NaCl in D2O, however, with a negligible temperature dependence.
Collapse
Affiliation(s)
- Phillip D. Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Michael Lueckheide
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yimin Mao
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Abstract
Polymers that feature both positive and negative charges along chains, known as polyampholytes, represent a class of materials that hold promise for a new generation of energy storage devices, the design of which will require knowledge of the underlying structure and dynamics. Here, we develop a theory based on the Rouse model for the dynamic structure factor of a single polyampholyte chain in the weak coupling regime (negligible intramolecular electrostatics) or subjected to weak external electric fields (governed by linear response). Neglecting effects of small ions, we find deviations in scaling from the classic Rouse theory and make predictions for scattering experiments performed on polyampholytes. We find that, under weak coupling with arbitrarily strong fields, the dynamics are highly dependent on the charge distribution and consequently look at two representative examples-random charge densities and periodic charge densities-with different scaling properties. Under weak fields, the dynamics are largely independent of charge distribution. Finally, we investigate the influence of hydrodynamic effects and the implications of including inertial effects in the model.
Collapse
Affiliation(s)
- Kevin S Silmore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
9
|
One-pot synthesis of double and triple polybetaine block copolymers and their temperature-responsive solution behavior. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Li B, Gong W, Jing X, Zheng B. Effect of NaCl concentration on the dispersion, stability and rheological properties of MWNTs by CMC. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1801458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Boyan Li
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiguang Gong
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiwei Jing
- Technology Center, Shanghai Sunrise Polymer Material Co., Ltd, Shanghai, PR China
| | - Baicun Zheng
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Erfani A, Flynn NH, Aichele CP, Ramsey JD. Encapsulation and delivery of protein from within poly(sulfobetaine) hydrogel beads. J Appl Polym Sci 2020. [DOI: 10.1002/app.49550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Erfani
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| | - Nicholas H. Flynn
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| | - Clint P. Aichele
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State University Stillwater Oklahoma USA
| |
Collapse
|
12
|
Ting JM, Marras AE, Mitchell JD, Campagna TR, Tirrell MV. Comparing Zwitterionic and PEG Exteriors of Polyelectrolyte Complex Micelles. Molecules 2020; 25:E2553. [PMID: 32486282 PMCID: PMC7321349 DOI: 10.3390/molecules25112553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
A series of model polyelectrolyte complex micelles (PCMs) was prepared to investigate the consequences of neutral and zwitterionic chemistries and distinct charged cores on the size and stability of nanocarriers. Using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization, we synthesized a well-defined diblock polyelectrolyte system, poly(2-methacryloyloxyethyl phosphorylcholine methacrylate)-block-poly((vinylbenzyl) trimethylammonium) (PMPC-PVBTMA), at various neutral and charged block lengths to compare directly against PCM structure-property relationships centered on poly(ethylene glycol)-block-poly((vinylbenzyl) trimethylammonium) (PEG-PVBTMA) and poly(ethylene glycol)-block-poly(l-lysine) (PEG-PLK). After complexation with a common polyanion, poly(sodium acrylate), the resulting PCMs were characterized by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). We observed uniform assemblies of spherical micelles with a diameter ~1.5-2× larger when PMPC-PVBTMA was used compared to PEG-PLK and PEG-PVBTMA via SAXS and DLS. In addition, PEG-PLK PCMs proved most resistant to dissolution by both monovalent and divalent salt, followed by PEG-PVBTMA then PMPC-PVBTMA. All micelle systems were serum stable in 100% fetal bovine serum over the course of 8 h by time-resolved DLS, demonstrating minimal interactions with serum proteins and potential as in vivo drug delivery vehicles. This thorough study of the synthesis, assembly, and characterization of zwitterionic polymers in PCMs advances the design space for charge-driven micelle assemblies.
Collapse
Affiliation(s)
- Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Alexander E. Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Joseph D. Mitchell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
| | - Trinity R. Campagna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (J.M.T.); (A.E.M.); (J.D.M.); (T.R.C.)
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
13
|
Lim J, Matsuoka H, Saruwatari Y. Effects of Halide Anions on the Solution Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5165-5175. [PMID: 32308007 DOI: 10.1021/acs.langmuir.0c00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The solution behavior of the double polybetaine block copolymer poly(2-((2-(methacryloyloxy)ethyl)dimethylammonio)acetate)-block-poly(3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (PGLBT-b-PSPE) in sodium halide aqueous solutions was investigated. In the presence of salt ions, the unimer-to-micelle transition of PGLBT-b-PSPE that originated by Coulombic attraction between PSPE motifs was suppressed and shifted to much lower temperatures. The transition was hindered more by increases in the salt concentration because of additional counterion binding on the ionized site of PGLBT-b-PSPE chains, which screens the dipole-dipole attractions. The specific ion effect was investigated on four different halides, Cl-, Br-, I-, and F-. Cl- and two chaotropes (Br- and I-) apparently prevented micelle formation, and the hindering effectiveness on the PSPE pairing followed the general Hofmeister series of anions: I- > Br- > Cl-. More chaotropic anions strongly maintained the polymer chains in a fully hydrated state when the same amount of salts was incorporated. However, F-, which is classified as a kosmotrope, only made a small contribution to lowering the transition point and led to abrupt transition without showing a gradual phase change prior to the transition. The variations of hydrodynamic radius and zeta potentials of unimers and micelles gave hints of the solvation state of salt-incorporated PGLBT-b-PSPEs in each state. These results suggest that chaotropic halides tend to exist in the vicinity of the diblock polybetaine chain surface and thus prominently influenced the thermoresponsive solution behavior, whereas kosmotropic F- prefers water molecules and causes minor changes in the PGLBT-b-PSPE aqueous solution.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
14
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
15
|
Wang D, Tan J, Han Y, Guo Y, An H. Synthesis and properties of temperature-resistant and salt-tolerant tetra-acrylamide copolymer. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1664912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dongping Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning ShiHua University, Fushun, P. R. China
| | - Jiawen Tan
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning ShiHua University, Fushun, P. R. China
| | - Yuhao Han
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning ShiHua University, Fushun, P. R. China
| | - Yanmei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, P. R. China
| | - Huiyong An
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning ShiHua University, Fushun, P. R. China
| |
Collapse
|
16
|
Yu Y, Yao Y, van Lin S, de Beer S. Specific anion effects on the hydration and tribological properties of zwitterionic phosphorylcholine-based brushes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Yaagoob IY, Ali SA, Al-Muallem HA, Mazumder MAJ. Scope of sulfur dioxide incorporation into alkyldiallylamine-maleic acid-SO 2 tercyclopolymer. RSC Adv 2018; 8:38891-38902. [PMID: 35702679 PMCID: PMC9101235 DOI: 10.1039/c8ra08723g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Alternate copolymerization of diallylamine derivatives [(CH2CH
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CH2)2NR; R = Me, (CH2)3PO(OEt)2, and CH2PO(OEt)2] (I)–maleic acid (MA) and (I·HCl)–SO2 pairs have been carried out thermally using ammonium persulfate initiator as well as UV radiation at a λ of 365 nm. The reactivity ratios of ≈0 for the monomers in each pair I–MA and I·HCl–SO2 ensured their alternation in each copolymer. However, numerous attempted terpolymerizations of I–MA–SO2 failed to entice MA to participate to any meaningful extent. In contrast to reported literature, only 1–2 mol% of MA was incorporated into the polymer chain mainly consisting of poly(I-alt-SO2). Quaternary diallyldialkylammonium chloride [(CH2CH–CH2)2N+R2Cl−; R = Me, Et] (II) also, did not participate in II–MA–SO2 terpolymerizations. Poly((I, R = Me)-alt-SO2) III is a stimuli-responsive polyampholyte; its transformation under pH-induced changes to cationic, polyampholyte-anionic, and dianionic polyelectrolytes has been examined by viscosity measurements. The pKa of two carboxylic acid groups and NH+ in III has been determined to be 2.62, 5.59, and 10.1. PA III, evaluated as a potential antiscalant in reverse osmosis plants, at the concentrations of 5 and 20 ppm, imparted ≈100% efficiency for CaSO4 scale inhibition from its supersaturated solution for over 50 and 500 min, respectively, at 40 °C. The synthesis of PA III in excellent yields from cheap starting materials and its very impressive performance may grant PA III a prestigious place as an environment-friendly phosphate-free antiscalant. Alternate copolymerization of diallylamine derivatives [(CH2=CH–CH2)2NR; R = Me, (CH2)nPO(OEt)2] (I)–maleic acid (MA) and (I·HCl)–SO2 pairs have been carried out thermally using ammonium persulfate initiator as well as UV radiation at λ of 365 nm.![]()
Collapse
Affiliation(s)
- Ibrahim Y Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia http://faculty.kfupm.edu.sa/CHEM/shaikh/ +966 13 860 4277 +966 13 860 3830
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia http://faculty.kfupm.edu.sa/CHEM/shaikh/ +966 13 860 4277 +966 13 860 3830
| | - Hasan A Al-Muallem
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia http://faculty.kfupm.edu.sa/CHEM/shaikh/ +966 13 860 4277 +966 13 860 3830
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia http://faculty.kfupm.edu.sa/CHEM/shaikh/ +966 13 860 4277 +966 13 860 3830
| |
Collapse
|
18
|
Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, Yamada NL, Moriwaki T, Ikemoto Y, Takahara A. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8404-8412. [PMID: 28737401 DOI: 10.1021/acs.langmuir.7b01935] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Effect of alkyl chain spacer length between the charged groups (CSL) in zwitterionic poly(sulfobetaine) (PSB) brushes on the hydration state was investigated. PSB brushes with ethyl (PMAES), propyl (PMAPS), or butyl (PMABS) CSL were prepared by surface-initiated atom transfer radical polymerization on silicon wafers. Hydration states of the PSB brushes in aqueous solutions and/or humid vapor were investigated by contact angle measurement, infrared spectroscopy, AFM observation, and neutron reflectivity. The PSB brushes are swollen in humid air and deionized water due to the hydration of the charged groups leading to the reduction of hydrated PSB brushes/water interfacial free energy. The hydrated PSB brushes exhibit clear interface with low interfacial roughness due to networking of the PSB brush chains through association of the SBs. The hydrated PSB brushes produce diffusive swollen layer in the presence of NaCl because of the charge screening followed by SB dissociation by the bound ions. The ionic strength sensitivity in the hydration got more significant with increasing the CSL in SBs because of the augmentation in partial charge by charged group separation.
Collapse
Affiliation(s)
- Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Inutsuka
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsunori Sakamaki
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuki Terayama
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Takenaka
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiko Higaki
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization , Ibaraki 319-1106, Japan
| | - Taro Moriwaki
- Japan Synchrotron Radiation Research Institute/SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute/SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Delgado JD, Schlenoff JB. Static and Dynamic Solution Behavior of a Polyzwitterion Using a Hofmeister Salt Series. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00525] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jose D. Delgado
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
20
|
Yaagoob IY, Al-Muallem HA, Ali SA. Synthesis and application of polyzwitterionic and polyampholytic maleic acid-alt-(diallylamino)propylphosphonates. RSC Adv 2017. [DOI: 10.1039/c7ra04418f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ammonium persulfate-initiated alternate copolymerization of maleic acid with phosphonate ester monomer [(CH2CH–CH2)2NH+(CH2)3PO3Et2Cl−] gave polyzwitterion A which upon ester hydrolysis afforded antiscalant polyampholyte B.
Collapse
Affiliation(s)
- Ibrahim Y. Yaagoob
- Chemistry Department
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Hasan A. Al-Muallem
- Chemistry Department
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Shaikh A. Ali
- Chemistry Department
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|