1
|
Nkepsu Mbitou RL, Goujon F, Dequidt A, Latour B, Devémy J, Blaak R, Martzel N, Emeriau-Viard C, Tchoufag J, Garruchet S, Munch E, Hauret P, Malfreyt P. Consistent and Transferable Force Fields for Statistical Copolymer Systems at the Mesoscale. J Chem Theory Comput 2022; 18:6940-6951. [PMID: 36205431 DOI: 10.1021/acs.jctc.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The statistical trajectory matching (STM) method was applied successfully to derive coarse grain (CG) models for bulk properties of homopolymers. The extension of the methodology for building CG models for statistical copolymer systems is much more challenging. We present here the strategy for developing CG models for styrene-butadiene-rubber, and we compare the quality of the resulting CG force fields on the structure and thermodynamics at different chemical compositions. The CG models are used through the use of a genuine mesoscopic method called the dissipative particle dynamics method and compared to high-resolution molecular dynamics simulations. We conclude that the STM method is able to produce coarse-grained potentials that are transferable in composition by using only a few reference systems. Additionally, this methodology can be applied on any copolymer system.
Collapse
Affiliation(s)
- R L Nkepsu Mbitou
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France.,Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - F Goujon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - A Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - B Latour
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - R Blaak
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - N Martzel
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - C Emeriau-Viard
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Tchoufag
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - S Garruchet
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - E Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Hauret
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| |
Collapse
|
2
|
Effect of the Nanoparticle Functionalization on the Cavitation and Crazing Process in the Polymer Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2488-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Zhang H, Ma R, Luo D, Xu W, Zhao Y, Zhao X, Gao Y, Zhang L. Understanding the cavitation and crazing behavior in the polymer nanocomposite by tuning shape and size of nanofiller. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Wan H, Gao K, Li S, Zhang L, Wu X, Wang X, Liu J. Chemical Bond Scission and Physical Slippage in the Mullins Effect and Fatigue Behavior of Elastomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Hu C, Lu T, Guo H. Developing a Transferable Coarse-Grained Model for the Prediction of Thermodynamic, Structural, and Mechanical Properties of Polyimides at Different Thermodynamic State Points. J Chem Inf Model 2019; 59:2009-2025. [DOI: 10.1021/acs.jcim.8b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenchen Hu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Lu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Salerno KM, Bernstein N. Role of many-body interactions in the structure of coarse-grained polymers. Phys Rev E 2018; 98:023310. [PMID: 30253532 DOI: 10.1103/physreve.98.023310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 11/07/2022]
Abstract
In developing coarse-grained (CG) polymer models it is important to reproduce both local and molecule-scale structure. We develop a procedure for fast calculation of the bond-orientation correlation and the internal squared distance 〈R^{2}(M)〉 through evaluation of the probability distribution functions that represent a CG model. Different CG models inherently contain or omit correlations between CG variables. Here, we construct CG models that contain specific correlations between CG variables. The importance of different correlations is tested on CG models of polyethylene, polytetrafluoroethylene, and poly-L-lactic acid. The chain stiffness and 〈R^{2}(M)〉 are calculated using both analytic evaluation and Monte Carlo sampling, and approximate model results are compared with exact results from all-atom simulations. For polymers with an exponential correlation decay, the bond-orientation correlation and 〈R^{2}(M)〉 indicate which CG variable correlations are most important to reproduce molecule-scale structure. Analysis of the bond-orientation correlation and internal-squared distance indicates that for poly-L-lactic acid the bond-orientation correlation requires qualitatively different additional terms in CG models and quantifies the error in neglecting this important behavior.
Collapse
Affiliation(s)
- K Michael Salerno
- NRC Research Associate, Resident at Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375
| | - Noam Bernstein
- US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375
| |
Collapse
|
7
|
|
8
|
Wan H, Shen J, Gao N, Liu J, Gao Y, Zhang L. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks. SOFT MATTER 2018; 14:2379-2390. [PMID: 29503989 DOI: 10.1039/c7sm02282d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.
Collapse
Affiliation(s)
- Haixiao Wan
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | - Jianxiang Shen
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Naishen Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China. and Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, People's Republic of China and Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology, People's Republic of China and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China. and Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, People's Republic of China and Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology, People's Republic of China and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| |
Collapse
|
9
|
Salerno KM, Bernstein N. Persistence Length, End-to-End Distance, and Structure of Coarse-Grained Polymers. J Chem Theory Comput 2018. [DOI: 10.1021/acs.jctc.7b01229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Michael Salerno
- NRC Research Associate, Resident at Center for Computational Materials Science, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Noam Bernstein
- US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| |
Collapse
|
10
|
Li Z, Liu J, Zhang Z, Gao Y, Liu L, Zhang L, Yuan B. Molecular dynamics simulation of the viscoelasticity of polymer nanocomposites under oscillatory shear: effect of interfacial chemical coupling. RSC Adv 2018; 8:8141-8151. [PMID: 35542003 PMCID: PMC9078516 DOI: 10.1039/c7ra13415k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/15/2018] [Indexed: 11/21/2022] Open
Abstract
In this work by adopting coarse-grained molecular dynamics simulation, we focus our attention on investigating the effect of the chemical coupling between polymer and nanoparticles (NPs) on the viscoelastic properties of polymer nanocomposites (PNCs). Firstly we examine the effect of the interfacial chemical coupling on the non-linear behavior, such as the change of the storage moduli, the loss moduli and the loss factor as a function of the strain amplitude. Besides the reinforcing effect contributed by the interfacial chemical interaction, a much smaller loss factor is also observed attributed to less molecular friction and dissipation. Meanwhile, the effects of temperature, frequency, and the interfacial physical interaction between NPs and polymers on the viscoelastic properties are also probed. To uncover the structural and dynamic effect of the interfacial chemical coupling, we calculate the radial distribution function of polymer chains around NPs, the content of the polymer beads in the first layer of the interfacial region under quiescent and dynamic conditions, the incoherent intermediate dynamic structure factor of the polymer beads, which are chemically or physically tethered to the NPs, and all the polymer beads of the system, the quantitative comparison of the mean relaxation time for different interfacial chemical coupling, and the mean-square displacement of the polymer chains. Lastly we analyze the change of the interfacial energy such as the physical and chemical energies during oscillatory shear. Through these analyses, we conclude that with the increase of the interfacial chemical coupling, the change extent of the interfacial physical interaction versus the periodic strain decreases, attributed to a much smaller adsorption-desorption reversible process. This can rationalize the much weaker non-linear behavior or the "Payne effect". Based on these results, we anticipate that a better molecular-level understanding is provided on the effect of the interfacial coupling on the viscoelastic properties of PNCs.
Collapse
Affiliation(s)
- Ziwei Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Zhiyu Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Li Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Binbin Yuan
- The Second Research Institute of Civil Aviation Administration of China Chengdu 610000 People's Republic of China
| |
Collapse
|
11
|
Wang W, Zhang Z, Davris T, Liu J, Gao Y, Zhang L, Lyulin AV. Simulational insights into the mechanical response of prestretched double network filled elastomers. SOFT MATTER 2017; 13:8597-8608. [PMID: 29109996 DOI: 10.1039/c7sm01794d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper deals with molecular-dynamics simulations of the mechanical properties of prestretched double network filled elastomers. To this end, we firstly validated the accuracy of this method, and affirmed that the produced stress-strain characteristics were qualitatively consistent with Lesser's experimental results on the prestretched tri-block copolymers with a competitive double network. Secondly, we investigated the effect of the crosslinking network ratio on the mechanical properties of the prestretched double network homopolymers under uniaxial tension. We found that the prestretched double network contributes greatly to the enhanced tensile stress and ultimate strength at fracture, as well as to the lower permanent set (the residual strain) and dynamic hysteresis loss, both parallel and perpendicular to the prestretching direction. Notably, though, an anisotropic behavior was observed: in the parallel direction, both the first and the second crosslinked networks bore the external force; whereas in the perpendicular direction, only the second crosslinked network was relevantly effective. Finally, the polymer nanocomposites with a prestretched double network exhibited tensile mechanical properties similar to those of the studied homopolymers with prestretched double networks. Summing up the results, it can be concluded that the incorporation of prestretched double networks with a specified crosslinking network ratio seems to be a promising method for manipulating the mechanical properties of elastomers and their nanocomposites, as well as for introducing anisotropy in their mechanical response.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kuo AT, Okazaki S, Shinoda W. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes. J Chem Phys 2017; 147:094904. [DOI: 10.1063/1.4986287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Wang W, Hou G, Zheng Z, Wang L, Liu J, Wu Y, Zhang L, Lyulin AV. Designing polymer nanocomposites with a semi-interpenetrating or interpenetrating network structure: toward enhanced mechanical properties. Phys Chem Chem Phys 2017; 19:15808-15820. [DOI: 10.1039/c7cp01453h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Semi-interpenetrating and interpenetrating network structures for the uniform dispersion of NPs and the reinforced mechanical properties of polymer nanocomposites.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Guanyi Hou
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Zijian Zheng
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Lu Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Youping Wu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Alexey V. Lyulin
- Group Theory of Polymers and Soft Matter
- Department of Applied Physics
- Technische Universiteit Eindhoven
- Eindhoven
- The Netherlands
| |
Collapse
|
14
|
Xiao Q, Guo H. Transferability of a coarse-grained atactic polystyrene model: the non-bonded potential effect. Phys Chem Chem Phys 2016; 18:29808-29824. [DOI: 10.1039/c6cp03753d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we construct an efficient and simple coarse grained (CG) model for atactic polystyrene (PS) by using a 1 : 1 mapping scheme at 463 K and 1 atm pressure and derive the corresponding bonded and non-bonded potentials in the CG force field (FF) via a direct Boltzmann inversion approach and a combined structure-based and thermodynamic quantities-based CG method, respectively.
Collapse
Affiliation(s)
- Qiang Xiao
- Beijing National Laboratory for Molecular Sciences
- Joint Laboratory of Polymer Sciences and Materials
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences
- Joint Laboratory of Polymer Sciences and Materials
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|