1
|
Abou-Ezze K, Llevot A, Taton D. Exploiting the Reversible Dimerization of N-Heterocyclic Carbenes to Access Dynamic Polymer Networks with an Organocatalytic Activity. ACS Macro Lett 2024; 13:1008-1015. [PMID: 39052990 DOI: 10.1021/acsmacrolett.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The capability of some N-heterocyclic carbenes (NHCs) to reversibly dimerize is exploited to access dynamic polymer networks. Benzimidazolium motifs serving as NHC precursors have thus been supported onto copolymer chains by reversible addition-fragmentation chain transfer (RAFT) copolymerization of styrene and up to 20 mol % of 4-vinylbenzyl-ethyl-benzimidazolium chloride. Molecular versions of 1,3-dialkyl benzimidazolium salts have been synthesized as models, the deprotonation of which with a strong base yields the NHC dimers in the form of tetraaminoalkenes. The crossover reaction between two distinct NHC homodimers, forming heterodimers, is then evidenced. Applying this deprotonation method to the RAFT-derived copolymers leads to polymer networks with cross-links consisting of labile dimerized NHC motifs. These networks can be subsequently decross-linked using two distinct triggers, namely, a monofunctional NHC precursor as competitor and carbon dioxide (CO2). In the latter case, regeneration of the network occurs by chemically fueling the linear copolymer bearing benzimidazolium motifs with tBuOK in the presence of trace amounts of water. The same networks can also be used as latent precursors of transient polyNHCs to catalyze the benzoin condensation upon heating. The polymer-supported organocatalysts can thus be used in successive catalytic cycles.
Collapse
Affiliation(s)
- Karine Abou-Ezze
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| | - Audrey Llevot
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| |
Collapse
|
2
|
Kong MM, Wei T, Liu B, Xi ZX, Ding JT, Liu X, Li K, Qin TL, Qian ZY, Wu WC, Wu JZ, Li WL. Discovery of novel ULK1 inhibitors through machine learning-guided virtual screening and biological evaluation. Future Med Chem 2024; 16:1821-1837. [PMID: 39145469 PMCID: PMC11485869 DOI: 10.1080/17568919.2024.2385288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: Build a virtual screening model for ULK1 inhibitors based on artificial intelligence.Materials & methods: Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million compounds. And molecular dynamics was used to explore the binding mechanism of active compounds.Results & conclusion: Possibly due to less available training data, machine learning models significantly outperform deep learning models. Among them, the Naive Bayes model has the best performance. Through virtual screening, we obtained three inhibitors with IC50 of μM level and they all bind well to ULK1. This study provides an efficient virtual screening model and three promising compounds for the study of ULK1 inhibitors.
Collapse
Affiliation(s)
- Miao-Miao Kong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Tao Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bo Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Zi-Xuan Xi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Tao Ding
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ke Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tian-Li Qin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhen-Yong Qian
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Can Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jian-Zhang Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, 325000, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wu-Lan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
3
|
Golmohammadi B, Shekaari H. High-flux ultrasonic processing for lithium separation using ionic liquid impregnated composite membranes. ULTRASONICS SONOCHEMISTRY 2024; 108:106974. [PMID: 38954863 PMCID: PMC11263791 DOI: 10.1016/j.ultsonch.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Battery industry, one of the most crucial components of the modern world, relies heavily on lithium production, and brines from the spent battery materials is one of the most important sources to exploit lithium. A new ultrasonic assisted membrane processing is proposed for lithium separation simulated brine. The effects of membrane composition, feed concentration, and ultrasonic conditions on the lithium extraction efficiency have been explored. The composite membrane including polysulfone (PSF) as the support and 1-alkyl-3-methylimidazolium hexafluorophosphate and tributyl phosphate as ionic liquid membrane. A porous PVC membrane has been used for prevention of the ILM loss. The optimal ultrasonic frequency is approximately 250 kHz, which matches the bulk modulus of the membrane and enhances the separation efficiency. Higher frequencies and optimized amplitude and pulse cycle settings further improve the lithium flux and selectivity. Moreover, higher flux and selectivity are achieved when separating lithium from alkali metal chlorides at higher feed concentrations, ranging from 250 ppm to 1000 ppm. The mechanism of enhanced lithium extraction by ultrasonics is attributed to the combination of microbubble formation, cavitation, and heat generation, which disrupt the concentration gradient and facilitate lithium transport across the membrane.
Collapse
Affiliation(s)
- Behrang Golmohammadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
4
|
Tian Y, He C, He L, Xu Z, Sui H, Li X. Doping heteroatoms to form multiple hydrogen bond sites for enhanced interfacial reconstruction and separations. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134477. [PMID: 38703682 DOI: 10.1016/j.jhazmat.2024.134477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.
Collapse
Affiliation(s)
- Ying Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Changqing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Lin He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China.
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| |
Collapse
|
5
|
Wang S, Chen L, Hao H, Qiao C, Song J, Cui C, Liu B. Study on the Infrared and Raman spectra of Ti 3AlB 2, Zr 3AlB 2, Hf 3AlB 2, and Ta 3AlB 2 by first-principles calculations. Sci Rep 2024; 14:15030. [PMID: 38951592 PMCID: PMC11217358 DOI: 10.1038/s41598-024-65980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
In this paper, the crystal geometry, electronic structure, lattice vibration, Infrared and Raman spectra of ternary layered borides M3AlB2 (M = Ti, Zr, Hf, Ta) are studied by using first principles calculation method based on the density functional theory. The electronic structure of M3AlB2 indicates that they are all electrical conductors, and the d orbitals of Ti, Zr, Hf, and Ta occupy most of the bottom of the conduction band and most of the top of the valence band. Al and B have lower contributions near their Fermi level. The lightweight and stronger chemical bonds of atom B are important factors that correspond to higher levels of peak positions in the Infrared and Raman spectra. However, the vibration frequencies, phonon density of states, and peak positions of Infrared and Raman spectra are significantly lower because of heavier masses and weaker chemical bonds for M and Al atoms. And, there are 6 Infrared active modes A2u and E1u, and 7 Raman active modes, namely A1g, E2g, and E1g corresponding to different vibration frequencies in M3AlB2. Furthermore, the Infrared and Raman spectra of M3AlB2 were obtained respectively, which intuitively provided a reliable Infrared and Raman vibration position and intensity theoretical basis for the experimental study.
Collapse
Affiliation(s)
- Shengzhao Wang
- Nanyang Institute of Technology, School of Mathematics and Physics, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
- Henan Province New Optoelectronic and Storage Materials Engineering Technology Research Center, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| | - Lanli Chen
- Nanyang Institute of Technology, School of Mathematics and Physics, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
- Henan Province New Optoelectronic and Storage Materials Engineering Technology Research Center, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Haoshan Hao
- Henan Province New Optoelectronic and Storage Materials Engineering Technology Research Center, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Chong Qiao
- Nanyang Institute of Technology, School of Mathematics and Physics, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
- Henan Province New Optoelectronic and Storage Materials Engineering Technology Research Center, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Jinfan Song
- Nanyang Institute of Technology, School of Mathematics and Physics, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
- Henan Province New Optoelectronic and Storage Materials Engineering Technology Research Center, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Chaojun Cui
- College of Mathematics and Physics, Anyang Institute of Technology, Huanghe Avenue, Anyang, 455000, Henan, People's Republic of China
| | - Bin Liu
- Nanyang Institute of Technology, School of Mathematics and Physics, No. 80 Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| |
Collapse
|
6
|
Zhang L, Luo G, Zhang W, Yao Y, Ren P, Geng X, Zhang Y, Wu X, Xu L, Lin P, Yu X, Wang P, Cui C. Strain Regulation and Defect Passivation of FA-Based Perovskite Materials for Highly Efficient Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305582. [PMID: 38064168 PMCID: PMC10870053 DOI: 10.1002/advs.202305582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Indexed: 02/17/2024]
Abstract
Formamidine lead triiodide (FAPbI3 ) perovskites have attracted increasing interest for photovoltaics attributed to the optimal bandgap, high thermal stability, and the record power conversion efficiency (PCE). However, the materials still face several key challenges, such as phase transition, lattice defects, and ion migration. Therefore, external ions (e.g., cesium ions (Cs+ )) are usually introduced to promote the crystallization and enhance the phase stability. Nevertheless, the doping of Cs+ into the A-site easily leads to lattice compressive strain and the formation of pinholes. Herein, trioctylphosphine oxide (TOPO) is introduced into the precursor to provide tensile strain outside the perovskite lattice through intermolecular forces. The special strain compensation strategy further improves the crystallization of perovskite and inhibits the ion migration. Moreover, the TOPO molecule significantly passivates grain boundaries and undercoordinated Pb2+ defects via the forming of P═O─Pb bond. As a result, the target solar cell devices with the synergistic effect of Cs+ and TOPO additives have achieved a significantly improved PCE of 22.71% and a high open-circuit voltage of 1.16 V (voltage deficit of 0.36 V), with superior stability under light exposure, heat, or humidity conditions.
Collapse
Affiliation(s)
- Linfeng Zhang
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Guohui Luo
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Weihao Zhang
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yuxin Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Penghui Ren
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiuhong Geng
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yi Zhang
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiaoping Wu
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Lingbo Xu
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Ping Lin
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xuegong Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Peng Wang
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Can Cui
- Key Laboratory of Optical Field Manipulation of Zhejiang ProvinceDepartment of PhysicsZhejiang Sci‐Tech UniversityHangzhou310018China
| |
Collapse
|
7
|
Liu L, Bashir S, Ling GZ, Hoe LK, Liew J, Kasi R, Subramaniam RT. Enhanced Sodium Ion Batteries' Performance: Optimal Strategies on Electrolytes for Different Carbon-based Anodes. CHEMSUSCHEM 2024; 17:e202300876. [PMID: 37695539 DOI: 10.1002/cssc.202300876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based materials have emerged as promising anodes for sodium-ion batteries (SIBs) due to the merits of cost-effectiveness and renewability. However, the unsatisfactory performance has hindered the commercialization of SIBs. During the past decades, tremendous attention has been put into enhancing the electrochemical performance of carbon-based anodes from the perspective of improving the compatibility of electrolytes and electrodes. Hence, a systematic summary of strategies for optimizing electrolytes between hard carbon, graphite, and other structural carbon anodes of SIBs is provided. The formulations and properties of electrolytes with solvents, salts, and additives added are comprehensively presented, which are closely related to the formation of solid electrolyte interface (SEI) and crucial to the sodium ion storage performance. Cost analysis of commonly used electrolytes has been provided as well. This review is anticipated to provide guidance in future rational tailoring of electrolytes with carbon-based anodes for sodium-ion batteries.
Collapse
Affiliation(s)
- Lu Liu
- The Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, S0603, Kuala, Lumpur, Malaysia
- Hubei Three Gorges Polytechnic, Yichang, 443000, Hubei, P. R. China
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - Goh Zhi Ling
- The Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, S0603, Kuala, Lumpur, Malaysia
| | - Loh Kah Hoe
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - Jerome Liew
- The Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, S0603, Kuala, Lumpur, Malaysia
| | - Ramesh Kasi
- The Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, S0603, Kuala, Lumpur, Malaysia
| | - Ramesh T Subramaniam
- The Centre for Ionics Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, S0603, Kuala, Lumpur, Malaysia
- Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
8
|
Liu H, Chen Y, Mo L, Long F, Wang Y, Guo Z, Chen H, Hu C, Liu Z. "Afterglow" Photodynamic Therapy Based on Carbon Dots Embedded Silica Nanoparticles for Nondestructive Teeth Whitening. ACS NANO 2023; 17:21195-21205. [PMID: 37862085 DOI: 10.1021/acsnano.3c05116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Teeth staining is a common dental health challenge in many parts of the world. Traditional teeth whitening techniques often lead to enamel damage and soft tissue toxicity due to the use of bioincompatible whitening reagents and continuous strong light irradiation. Herein, an "afterglow" photodynamic therapy (aPDT) for teeth whitening is proposed, which is realized by energy transition pathways of intersystem crossing. The covalent and hydrogen bonds formed by carbon dots embedded in silica nanoparticles (CDs@SiO2) facilitate the passage of energy through intersystem crossing (ISC), thereby extending the half-life of reactive oxygen species (ROS). The degradation efficiency of aPDT on dyes was higher than 95% in all cases. It can thoroughly whiten teeth by eliminating stains deep in the enamel without damaging the enamel structure and causing any tissue toxicity. This study illustrates the superiority of aPDT for dental whitening and the approach to exploring carbon-dots-based nanostructures in the treatment of oral diseases.
Collapse
Affiliation(s)
- Hao Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yikai Chen
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- College of Materials and Energy, South China Agricultural University Guangzhou 510642, China
| | - Luoqi Mo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- College of Materials and Energy, South China Agricultural University Guangzhou 510642, China
| | - Fangdong Long
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yixiao Wang
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haolin Chen
- Department of Anesthesiology, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou 510010, China
| | - Chaofan Hu
- College of Materials and Energy, South China Agricultural University Guangzhou 510642, China
| | - Zhiming Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
9
|
Su P, Ye H, Sun N, Liu S, Zhang H. Second Harmonic Generation in Janus Transition Metal Chalcogenide Oxide Monolayers: A First-Principles Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2150. [PMID: 37513161 PMCID: PMC10386494 DOI: 10.3390/nano13142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Due to the unique optical responses induced by vertical atomic asymmetry inside a monolayer, two-dimensional Janus structures have been conceived as promising building blocks for nanoscale optical devices. In this paper, second harmonic generation (SHG) in Janus transition metal chalcogenide oxide monolayers is systematically investigated by the first-principles calculations. Second-order nonlinear susceptibilities are theoretically determined for Janus MXO (M = Mo/W, X = S/Se/Te) monolayers. The calculated values are comparable in magnitude with Janus MoSSe monolayer. X-M-O symmetry breaking leads to non-zero components in vertical direction, compared with the non-Janus structure. Focusing on the SHG induced by incident light at 1064 nm, polarization-dependent responses of six Janus MXO monolayers are demonstrated. The symmetry of p-polarization changes from six-fold to three-fold with acute incidence angle. Moreover, the effects of biaxial strain on band structures and SHG are further investigated, taking MoSO as an exemplary case. We expect these results to bring in recipes for designing nonlinear optical devices based on Janus transition metal chalcogenide oxide monolayers.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Naizhang Sun
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shining Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hu Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
10
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Sorour Amini H, Mohammadi A. Microparticle separation using dielectrophoresis-assisted inertial microfluidics: A GPU-accelerated immersed boundary-lattice Boltzmann simulation. Phys Rev E 2023; 107:035307. [PMID: 37073039 DOI: 10.1103/physreve.107.035307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
In this study, the migration of microparticles towards the inertial equilibrium positions in a straight microchannel with a square cross section in the presence of an inhomogeneous oscillating electric field was examined. The dynamics of microparticles were simulated using the immersed boundary-lattice Boltzmann method of fluid-structure interaction simulation. Moreover, the lattice Boltzmann Poisson solver was applied to calculate the electric field required for calculation of the dielectrophoretic force using the equivalent dipole moment approximation. These numerical methods were implemented on a single GPU coupled with the AA pattern of storing distribution functions in memory to speed up the computationally demanding simulation of microparticles dynamics. In the absence of an electric field, spherical polystyrene microparticles migrate to four symmetric stable equilibrium positions corresponding to the sidewalls of the square cross-sectional microchannel. The equilibrium distance from the sidewall was increased by increasing the particle size. The equilibrium positions near electrodes disappeared and particles migrated to the other equilibrium positions far from the electrodes by the application of the high-frequency oscillatory electric field at voltages beyond a threshold value. Finally, a two-step dielectrophoresis-assisted inertial microfluidics methodology was introduced for particle separation based on the crossover frequencies and the observed threshold voltages of different particles. The proposed method exploited the synergistic effect of dielectrophoresis and inertial microfluidics methods to remove their limitations, allowing the separation of a broad range of polydisperse particle mixtures with a single device in a short time.
Collapse
Affiliation(s)
- Hossein Sorour Amini
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Aliasghar Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| |
Collapse
|
12
|
Dong J, Wang Z, Yang F, Wang H, Cui X, Li Z. Update of ultrasound-assembling fabrication and biomedical applications for heterogeneous polymer composites. Adv Colloid Interface Sci 2022; 305:102683. [PMID: 35523099 DOI: 10.1016/j.cis.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 01/24/2023]
Abstract
As a power-driving approach, ultrasound irradiation is very appealing to the preparation or modification of new materials. In the review, we overviewed the latest development of ultrasound-mediated effects or reactions in polymer composites, and demonstrated its unique and powerful aspects on the polymerization or aggregation. The review generalized the different categories of heterogeneous polymer composites by defining the constituents, and described the shapes, sizes and basic properties of various purpose-specific or site-specific products. Importantly, the review paid more attention to the main biomedicine applications of heterogeneous polymer composites, such as drug or bioactive substance entrapment, delivery, release, imaging, and therapy, and emphasized many advantages of ultrasound-assembling approaches and heterogeneous polymer composites in biology and medicine fields. In addition, the review also indicated the prospective challenges of heterogeneous polymer composites both in ultrasound-assembling designs and in biomedical applications.
Collapse
|
13
|
2,5-Dimethylfuran Production by Catalytic Hydrogenation of 5-Hydroxymethylfurfural Using Ni Supported on Al2O3-TiO2-ZrO2 Prepared by Sol-Gel Method: The Effect of Hydrogen Donors. Molecules 2022; 27:molecules27134187. [PMID: 35807429 PMCID: PMC9268021 DOI: 10.3390/molecules27134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) has been described as one of the 12 key platform molecules derived from biomass by the US Department of Energy, and its hydrogenation reaction produces versatile liquid biofuels such as 2,5-dimethylfuran (2,5-DMF). Catalytic hydrogenation from 5-HMF to 2,5-DMF was thoroughly studied on the metal nickel catalysts supported on Al2O3-TiO2-ZrO2 (Ni/ATZ) mixed oxides using isopropanol and formic acid (FA) as hydrogen donors to find the best conditions of the reaction and hydrogen donor. The influence of metal content (wt%), Ni particle size (nm), Nickel Ni0, Ni0/NiO and NiO species, metal active sites and acid-based sites on the catalyst surface, and the effect of the hydrogen donor (isopropanol and formic acid) were systematically studied. The structural characteristics of the materials were studied using different physicochemical methods, including N2 physisorption, XRD, Raman, DRS UV-Vis, FT-IR, SEM, FT-IR Pyad, H2-TPD, CO2-TPD, H2-TPR, TEM and XPS. Second-generation 2,5-DMF biofuel and 5-HMF conversion by-products were analyzed and elucidated using 1H NMR. It was found that the Ni0NiO/ATZ3WI catalyst synthesized by the impregnation method (WI) generated a good synergistic effect between the species, showing the best catalytic hydrogenation of 5-HMF to 2,5-DMF using formic acid as a hydrogen donor for 24 h of reaction and temperature of 210 °C with 20 bar pressure of Argon (Ar).
Collapse
|
14
|
Cortez-Elizalde J, Silahua-Pavón AA, Córdova-Pérez GE, Arévalo-Pérez JC, Guerra-Que Z, Espinosa-González CG, Ortíz-Chi F, Godavarthi S, Torres-Torres JG. Production of 5-Hydroxymethylfurfural from glucose using Al2O3-TiO2-ZrO2 ternary catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Yang F, Zhang Y, Meng X, Zhang T, Qu G, Wang K, Zhao W, Huang X, Zhong B, Xia L, Wang H. A new precursor to diversify BCN architectures with enhanced electromagnetic wave absorption. NANOTECHNOLOGY 2022; 33:155601. [PMID: 34488196 DOI: 10.1088/1361-6528/ac23f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Hexagonal BCN (h-BCN) is considered to be a promising dielectric ceramic material with a hybrid B-C-N structure and an electromagnetic wave (EMW) absorbing material with tenable properties. H-BCN bulk and microtube architectures are simultaneously synthesized by precursor pyrolysis method using BCl3, aniline (AN) and diethylenetriamine (DETA) as the raw material. By analyzing its electromagnetic parameters, the effective absorption bandwidth of the sample cracking at 900 °C with the proportion of raw materials (DETA:AN = 1:1) can be up to 7.2 GHz, and the minimum reflection loss can reach -43.6 dB at 7.92 GHz with a thickness of 3.5 mm. Moreover, the EMW absorbing property of the ceramic can be tuned by adjusting the ratio of monomers, pyrolysis temperature, and cooling rates.
Collapse
Affiliation(s)
- Fanfan Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Yu Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Xiaohuan Meng
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Tao Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Ge Qu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Kun Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Wei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Xiaoxiao Huang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Long Xia
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Huatao Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| |
Collapse
|
16
|
Asadollahzadeh M, Torkaman R. Extraction of dysprosium from waste neodymium magnet solution with ionic liquids and ultrasound irradiation procedure. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Omor Faruk Patwary M, Mahbubur Rahman M, Khalid Bin Islam M, Ackas Ali M, Halim MA, Ahmed F. Probing the non-bonding interaction of small molecules with graphene oxide using DFT based vibrational circular dichroism. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Electrochemical Approaches for the Recovery of Metals from Electronic Waste: A Critical Review. RECYCLING 2021. [DOI: 10.3390/recycling6030053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electronic waste (e-waste) management and recycling are gaining significant attention due to the presence of precious, critical, or strategic metals combined with the associated environmental burden of recovering metals from natural mines. Metal recovery from e-waste is being prioritized in metallurgical extraction owing to the fast depletion of natural mineral ores and the limited geographical availability of critical and/or strategic metals. Following collection, sorting, and physical pre-treatment of e-waste, electrochemical processes-based metal recovery involves leaching metals in an ionic form in a suitable electrolyte. Electrochemical metal recovery from e-waste uses much less solvent (minimal reagent) and shows convenient and precise control, reduced energy consumption, and low environmental impact. This critical review article covers recent progress in such electrochemical metal recovery from e-waste, emphasizing the comparative significance of electrochemical methods over other methods in the context of an industrial perspective.
Collapse
|
19
|
Silva M, Chandrapala J. Ultrasonic Emulsification of Milk Proteins Stabilized Primary and Double Emulsions: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | |
Collapse
|
20
|
Li Z, Dong J, Wang L, Zhang Y, Zhuang T, Wang H, Cui X, Wang Z. A power-triggered preparation strategy of nano-structured inorganics: sonosynthesis. NANOSCALE ADVANCES 2021; 3:2423-2447. [PMID: 36134164 PMCID: PMC9418414 DOI: 10.1039/d1na00038a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 06/16/2023]
Abstract
Ultrasound irradiation covers many chemical reactions crucially aiming to design and synthesize various structured materials as an enduring trend in frontier research studies. Here, we focus on the latest progress of ultrasound-assisted synthesis and present the basic principles or mechanisms of sonosynthesis (or sonochemical synthesis) from ultrasound irradiation in a brand new way, including primary sonosynthesis, secondary sonosynthesis, and synergetic sonosynthesis. This current review describes in detail the various sonochemical synthesis strategies for nano-structured inorganic materials and the unique aspects of products including the size, morphology, structure, and properties. In addition, the review points out the probable challenges and technological potential for future advancement. We hope that such a review can provide a comprehensive understanding of sonosynthesis and emphasize the great significance of structured materials synthesis as a power-induced strategy broadening the updated applications of ultrasound.
Collapse
Affiliation(s)
- Zhanfeng Li
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University 266071 Qingdao China
| | - Jun Dong
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University 266071 Qingdao China
| | - Lun Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University 266071 Qingdao China
| | - Yongqiang Zhang
- College of Chemistry, Jilin University 130012 Changchun China
- Junan Sub-Bureau of Linyi Ecological Environmental Bureau 276600 Linyi China
| | - Tingting Zhuang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University 266071 Qingdao China
| | - Huiqi Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University 266071 Qingdao China
| | - Xuejun Cui
- College of Chemistry, Jilin University 130012 Changchun China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University 266071 Qingdao China
| |
Collapse
|
21
|
Bhadra BN, Baek YS, Choi CH, Jhung SH. How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO 2@carbon. Phys Chem Chem Phys 2021; 23:8368-8374. [PMID: 33876001 DOI: 10.1039/d1cp00633a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative-denitrogenation (ODN) of indole (IND) and methyl-substituted INDs (methyl-INDs), representative neutral nitrogen-containing compounds (NCCs), was carried out with TiO2@C and H2O2 as heterogeneous catalyst and oxidant, respectively, under ultrasound irradiation. The oxidation of INDs progressed through radical formation, as evidenced by electron spin resonance and radical scavenger experiments. The oxidized position of INDs in the ODN process was checked via characterization of the obtained products. It was observed that the oxidation finally occurred on the carbon rather than on the nitrogen atom of INDs, unlike the oxidation of basic NCCs (e.g., oxidation on the nitrogen atom, as respective N-oxides were formed) and sulfur-containing compounds. To understand the relative reactivity and oxidation position, electron density (ED) on the nitrogen atom of the studied INDs and relative stability of representative intermediates/products were calculated. It could be confirmed that ED on the nitrogen atom of the INDs is very important in the oxidation of INDs since the ODN reactivity of INDs was enhanced with increasing ED on the nitrogen atom of the investigated INDs. Moreover, theoretical analyses of the relative stability of substrate and intermediates/products (especially for IND) can explain the route for the observed final products in ODN. In other words, oxygen on the nitrogen atom, obtained via the first step of oxidation (electrophilic addition of an active oxygen atom on nitrogen), moves to the nearby carbon atom, because of the relative stability of the intermediates and products.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | | | | |
Collapse
|
22
|
Kanchi PK, Dasmahapatra AK. Destabilization of the Alzheimer's amyloid-β protofibrils by THC: A molecular dynamics simulation study. J Mol Graph Model 2021; 105:107889. [PMID: 33725642 DOI: 10.1016/j.jmgm.2021.107889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease is a leading cause of dementia in the elderly population for which there is no cure at present. Deposits of neurotoxic plaques are found in the brains of patients which are composed of fibrils of the amyloid-β peptide. Molecules which can disrupt these fibrils have gained attention as potential therapeutic agents. Δ-tetrahydrocannabidiol (THC) is a cannabinoid, which can bind to the receptors in the brain, and has shown promise in reducing the fibril content in many experimental studies. In our present study, by employing all atom molecular dynamics simulations, we have investigated the mechanism of the interaction of the THC molecules with the amyloid-β protofibrils. Our results show that the THC molecules disrupt the protofibril structure by binding strongly to them. The driving force for the binding was the hydrophobic interactions with the hydrophobic residues in the fibrils. As a result of these interactions, the tight packing of the hydrophobic core of the protofibrils was made loose, and salt bridges, which were important for stability were disrupted. Hydrogen bonds between the chains of the protofibrils which are important for stability were disrupted, as a result of which the β-sheet content was reduced. The destabilization of the protofibrils by the THC molecules leads to the conclusion that THC molecules may be considered for the therapy in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Pavan Krishna Kanchi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
23
|
Zhang M, Han F, Li C, Wang P, Yang Y, Yu K. Combined effect of weak electric field and ions on critical water cluster: Insight from molecular dynamics simulation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Yang J, Su H, Lian C, Shang Y, Liu H, Wu J. Understanding surface charge regulation in silica nanopores. Phys Chem Chem Phys 2020; 22:15373-15380. [PMID: 32597911 DOI: 10.1039/d0cp02152k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanoporous silica is used in a wide variety of applications, ranging from bioanalytical tools and materials for energy storage and conversion as well as separation devices. The surface charge density of nanopores is not easily measured by experiment yet plays a vital role in the performance and functioning of silica nanopores. Herein, we report a theoretical model to describe charge regulation in silica nanopores by combining the surface-reaction model and the classical density functional theory (CDFT). The theoretical predictions provide quantitative insights into the effects of pH, electrolyte concentration, and pore size on the surface charge density and electric double layer structure. With a fixed pore size, the surface charge density increases with both pH and the bulk salt concentration similar to that for an open surface. At fixed pH and salt concentration, the surface charge density rises with the pore size until it reaches the bulk asymptotic value when the surface interactions become negligible. At high pH, the surface charge density is mainly determined by the ratio of the Debye screening length to the pore size (λD/D).
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
25
|
Yu S, Yu T, Song W, Yu X, Qiao J, Wang W, Dong H, Wu Z, Dai L, Li T. Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature. ULTRASONICS SONOCHEMISTRY 2020; 64:105039. [PMID: 32097866 DOI: 10.1016/j.ultsonch.2020.105039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
A sonochemical reactor was developed to study the ultrasound-assisted cyanide extraction of gold from gold ore at low temperature. The effects of ultrasound on gold leaching in low temperature and conventional conditions were investigated. At the low temperature of 10 °C, ultrasound-assisted extraction increased extraction rate of gold by 0.6%-0.8% and reduced the gold content of cyanide tailings to 0.28 g/t in the leaching of gold concentrate and cyanide tailings, respectively. At the conventional temperature of 25 °C, ultrasound-assisted extraction obtained a 0.1% higher extraction rate of gold compared with conventional extraction, with the unit consumption of NaCN reduction of 15%. The analysis of kinetic model also demonstrated that sonication indeed improved the reaction of gold leaching greatly. The mineralogy and morphology of ore were further analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and particle size analyzer to explore the strengthening mechanism of gold leaching. The results showed that the ore particles were smashed, the ore particle surface was peeled, the passive film was destroyed and the reaction resistance decreased under ultrasonic processing. Therefore, the extraction rate of gold was improved and the extraction time was shortened significantly in ultrasound-assisted cyanide extraction.
Collapse
Affiliation(s)
- Shimin Yu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tingting Yu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Wenping Song
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiyang Yu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jianxin Qiao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wuyi Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Huijuan Dong
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiguang Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; Institute of Pharmacy, Sechenov University, Moscow 119991, Russia
| | - Lizhou Dai
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tianlong Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; Institute of Pharmacy, Sechenov University, Moscow 119991, Russia.
| |
Collapse
|
26
|
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020; 5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023] Open
Abstract
The scope of this article is to present an overview of the Density Functional based Tight Binding (DFTB) method and its applications. The paper introduces the basics of DFTB and its standard formulation up to second order. It also addresses methodological developments such as third order expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, implementation of long-range short-range separation, treatment of excited states via the time-dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A number of applications are reviewed, focusing on -(i)- the variety of systems that have been studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, supported or embedded systems, and -(ii)- properties and processes, such as vibrational spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally outlines and perspectives are given.
Collapse
Affiliation(s)
- Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Nathalie Tarrat
- CEMES, Université de Toulouse (UPS), CNRS, UPR8011, Toulouse, Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Leo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, UMR5589, Université de Toulouse (UPS) and CNRS, Toulouse, France
| | - Carles Martí
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
- Laboratoire de Chimie, UMR5182, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, Lyon, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| |
Collapse
|
27
|
Single step synthesis of novel hybrid fluorescence probe for selective recognition of Pr(III) and As(III) from soil samples. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Theisen J, Penisson C, Rey J, Zemb T, Duhamet J, Gabriel JCP. Effects of porous media on extraction kinetics: Is the membrane really a limiting factor? J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Godoy AP, Ecorchard P, Beneš H, Tolasz J, Smržová D, Seixas L, Pedrotti JJ, de Souza EAT, El Seoud OA, Donato RK. Ultrasound exfoliation of graphite in biphasic liquid systems containing ionic liquids: A study on the conditions for obtaining large few-layers graphene. ULTRASONICS SONOCHEMISTRY 2019; 55:279-288. [PMID: 30712861 DOI: 10.1016/j.ultsonch.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023]
Abstract
Herein we describe a successful protocol for graphite exfoliation using a biphasic liquid system (water/dichloromethane, DCM) containing ionic liquids (ILs; 1,3-dibenzylimidazolium benzoate- and 1-naphthoate). The use of (surface active) IL and sonication led to stable DCM/water (O/W) emulsion, which enhanced graphene formation, suppressed its re-aggregation and decreased shear/cavitation damage. The O/W emulsion stabilization by the ILs was studied by dynamic light scattering (DLS), whereas their interaction with the graphene sheets were described by Density Functional Theory (DFT) calculations. Moreover, a comprehensive investigation on cavitation-based exfoliation in the O/W systems was performed to assess the importance of operational parameters, including, the type of ultrasound processor, ultrasound power and insonation, and the influence of the exfoliation medium.
Collapse
Affiliation(s)
- Anna P Godoy
- MackGraphe (Graphene and Nanomaterials Research Center), Mackenzie Presbyterian University, Rua da Consolação, 930, São Paulo, SP, Brazil
| | - Petra Ecorchard
- Institute of Inorganic Chemistry of the CAS, v.v.i., 25068 Řež, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry of the CAS, v.v.i., Heyrovsky Sq. 2, 16206 Prague 6, Czech Republic
| | - Jakub Tolasz
- Institute of Inorganic Chemistry of the CAS, v.v.i., 25068 Řež, Czech Republic
| | - Darina Smržová
- Institute of Inorganic Chemistry of the CAS, v.v.i., 25068 Řež, Czech Republic
| | - Leandro Seixas
- MackGraphe (Graphene and Nanomaterials Research Center), Mackenzie Presbyterian University, Rua da Consolação, 930, São Paulo, SP, Brazil
| | - Jairo J Pedrotti
- MackGraphe (Graphene and Nanomaterials Research Center), Mackenzie Presbyterian University, Rua da Consolação, 930, São Paulo, SP, Brazil
| | - Eunezio A T de Souza
- MackGraphe (Graphene and Nanomaterials Research Center), Mackenzie Presbyterian University, Rua da Consolação, 930, São Paulo, SP, Brazil
| | - Omar A El Seoud
- Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Ricardo K Donato
- MackGraphe (Graphene and Nanomaterials Research Center), Mackenzie Presbyterian University, Rua da Consolação, 930, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Hoyo J, Ivanova K, Guaus E, Tzanov T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 2019; 543:114-121. [DOI: 10.1016/j.jcis.2019.02.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
|
31
|
Corzo BA, Suárez-Herrera MF. Effect of carbon tetrachloride on the luminol sonochemiluminescence reaction kinetics during multibubble cavitation. ULTRASONICS SONOCHEMISTRY 2018; 48:281-286. [PMID: 30080552 DOI: 10.1016/j.ultsonch.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The sonochemiluminescence (SCL) of luminol reaction was studied in alkaline medium using a dissolution of luminol, sodium carbonate, hydrogen peroxide and carbon tetrachloride. The presence of carbon tetrachloride enhances the SCL reaction up to allow the study of the reaction in real time using a cell phone video camera. This experimental setup allows the study of the cavitation dynamics in real time and through all the reactor, including homogeneous and heterogeneous cavitation zones. Finally, it was tested the effect of ethanol, the ionic strength and pH on the SCL.
Collapse
Affiliation(s)
- Bryan A Corzo
- Departamento De Química, Facultad De Ciencias, Universidad Nacional De Colombia, Cra 30 # 45-03, Edificio 451, Bogotá, Colombia
| | - Marco F Suárez-Herrera
- Departamento De Química, Facultad De Ciencias, Universidad Nacional De Colombia, Cra 30 # 45-03, Edificio 451, Bogotá, Colombia.
| |
Collapse
|
32
|
Radziuk D, Mikhnavets L, Tkach A, Tabulina L, Labunov V. Sonochemically Assembled Photoluminescent Copper-Modified Graphene Oxide Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8599-8610. [PMID: 29961327 DOI: 10.1021/acs.langmuir.8b01557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new accessible sonochemical assembly method is developed for the preparation of photoluminescent oil-filled silica@CuS/Cu2O/CuO-graphene oxide (GO) microspheres that emit light of green, yellow, and red colors. This method is based on the ultrasonic emulsification of a biphasic mixture consisting of CuS/Cu2O/CuO-graphene oxide (GO) nanocomposites with poly(vinyl alcohol) (PVA) (aqueous phase) and tetraethyl orthosilicate with sunflower oil (organic phase). CuS/Cu2O/CuO-GO nanocomposites are composed of sonochemically formed three phases of copper: covellite CuS (p-type semiconductor), cuprite Cu2O (Bloch p-type semiconductor), and CuO (charge-transfer insulator). The photoluminescence properties of microspheres result from H-bridging between PVA and CuS/Cu2O/CuO-GO nanostructures, light absorption ability of Cu2O, and charge-transfer insulation by CuO. Substitution of PVA by S-containing methylene blue quenches fluorescence by enhanced dye adsorption on CuS/Cu2O/CuO-GO because of CuS and induced charge transfer. Non-S-containing malachite green is in a nonionized form and tends to be in the oil phase, prohibiting the charge transfer on CuS/Cu2O/CuO-GO.
Collapse
Affiliation(s)
- Darya Radziuk
- Laboratory of Integrated Micro- and Nanosystems , Belarusian State University of Informatics and Radioelectronics , 6 P. Brovki Street , Minsk 220013 , Belarus
| | - Lubov Mikhnavets
- Laboratory of Integrated Micro- and Nanosystems , Belarusian State University of Informatics and Radioelectronics , 6 P. Brovki Street , Minsk 220013 , Belarus
| | - Anastasia Tkach
- Laboratory of Integrated Micro- and Nanosystems , Belarusian State University of Informatics and Radioelectronics , 6 P. Brovki Street , Minsk 220013 , Belarus
| | - Ludmila Tabulina
- Laboratory of Integrated Micro- and Nanosystems , Belarusian State University of Informatics and Radioelectronics , 6 P. Brovki Street , Minsk 220013 , Belarus
| | - Vladimir Labunov
- Laboratory of Integrated Micro- and Nanosystems , Belarusian State University of Informatics and Radioelectronics , 6 P. Brovki Street , Minsk 220013 , Belarus
| |
Collapse
|
33
|
Li Z, Wang Z, Du X, Shi C, Cui X. Sonochemistry-Assembled Stimuli-Responsive Polymer Microcapsules for Drug Delivery. Adv Healthc Mater 2018. [PMID: 29527834 DOI: 10.1002/adhm.201701326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive polymer microcapsules (PMs) fabricated by the sonochemical method have emerged for developing useful drug delivery systems, and the latest developments are mainly focusing on the synthetic strategies and properties such as structure, size, stability, loading capacity, drug delivery, and release. There, the primary attribution of sonochemistry is to offer a simple and practical approach for the preparation of PMs. Structure, size, stability, and properties of PMs are designed mainly according to synthetic materials, implementation schemes, or specific demands. Numerous functionalities of PMs based on different stimuli are demonstrated: targeting motion in a magnetic field or adhering to the living cells with sensitive sites through molecular recognition, and stimuli-triggered release including enzymatic catalysis, chemical reaction as well as physical or mechanical process. The current review discusses the basic principles and mechanisms of stimuli effects, and describes the progress in the application such as targeted drug systems and controlled drug systems, and also gives an outlook on the future challenges and opportunities for drug delivery and theranostics.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Chao Shi
- College of Chemistry; Jilin University; 130012 Changchun China
| | - Xuejun Cui
- College of Chemistry; Jilin University; 130012 Changchun China
| |
Collapse
|
34
|
Salat M, Petkova P, Hoyo J, Perelshtein I, Gedanken A, Tzanov T. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr Polym 2018; 189:198-203. [DOI: 10.1016/j.carbpol.2018.02.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 02/07/2023]
|
35
|
Xu Y, Fei J, Li G, Yuan T, Li Y, Wang C, Li X, Li J. Enhanced Photophosphorylation of a Chloroplast-Entrapping Long-Lived Photoacid. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academic of Sciences; Beijing 100049 China
| |
Collapse
|
36
|
Xu Y, Fei J, Li G, Yuan T, Li Y, Wang C, Li X, Li J. Enhanced Photophosphorylation of a Chloroplast-Entrapping Long-Lived Photoacid. Angew Chem Int Ed Engl 2017; 56:12903-12907. [PMID: 28834071 DOI: 10.1002/anie.201706368] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/04/2017] [Indexed: 01/09/2023]
Abstract
Enhancing solar energy conversion efficiency is very important for developing renewable energy, protecting the environment, and producing agricultural products. Efficient enhancement of photophosphorylation is demonstrated by coupling artificial photoacid generators (PAGs) with chloroplasts. The encapsulation of small molecular long-lived PAGs in the thylakoid lumen is improved greatly by ultrasonication. Under visible-light irradiation, a fast intramolecular photoreaction of the PAG occurs and produces many protons, remarkably enhancing the proton gradient in situ. Consequently, compared to pure chloroplasts, the assembled natural-artificial hybrid demonstrates approximately 3.9 times greater adenosine triphosphate (ATP) production. This work will provide new opportunities for constructing enhanced solar energy conversion systems.
Collapse
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Boubekri R, Gross M, In M, Diat O, Nobili M, Möhwald H, Stocco A. MHz Ultrasound Induced Roughness of Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10177-10183. [PMID: 27635785 DOI: 10.1021/acs.langmuir.6b02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interface between two fluids is never flat at the nanoscale, and this is important for transport across interfaces. In the absence of any external field, the surface roughness is due to thermally excited capillary waves possessing subnanometric amplitudes in the case of simple liquids. Here, we investigate the effect of ultrasound on the surface roughness of liquid-gas and liquid-liquid interfaces. Megahertz (MHz) frequency ultrasound was applied normal to the interface at relatively low ultrasonic pressures (<0.6 MPa), and the amplitudes of surface fluctuations have been measured by light reflectivity and ellipsometry. We found a dramatic enhancement of surface roughness, roughly linear with intensity, with vertical displacements of the interface as high as 50-100 nm. As a consequence, the effective contact area between two fluids can be increased by ultrasound. This result has a clear impact for enhancing interface based processes such as mass or heat transfer.
Collapse
Affiliation(s)
- Rym Boubekri
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Univ. Montpellier, Montpellier F-34095, France
- Institut de Chimie Séparative de Marcoule, UMR 5257 (CEA, CNRS, UM, ENSCM), BP 17171, 30207 Cedex Bagnols-sur-Cèze, France
| | - Michel Gross
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Univ. Montpellier, Montpellier F-34095, France
| | - Martin In
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Univ. Montpellier, Montpellier F-34095, France
| | - Olivier Diat
- Institut de Chimie Séparative de Marcoule, UMR 5257 (CEA, CNRS, UM, ENSCM), BP 17171, 30207 Cedex Bagnols-sur-Cèze, France
| | - Maurizio Nobili
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Univ. Montpellier, Montpellier F-34095, France
| | - Helmuth Möhwald
- Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg, 14476 Potsdam, Germany
| | - Antonio Stocco
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Univ. Montpellier, Montpellier F-34095, France
| |
Collapse
|
38
|
Radziuk D, Möhwald H. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources. Chemphyschem 2016; 17:931-53. [DOI: 10.1002/cphc.201500960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Darya Radziuk
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| | - Helmuth Möhwald
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| |
Collapse
|