1
|
Eliasquevici R, Bernardino K. Counter-ion adsorption and electrostatic potential in sodium and choline dodecyl sulfate micelles - a molecular dynamics simulation study. J Mol Model 2024; 30:101. [PMID: 38467947 DOI: 10.1007/s00894-024-05897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
CONTEXT Choline-based surfactants are interesting both from the practical point of view to obtaining environmental-friendly surfactants as well as from the theoretical side since the interactions between the choline and surfactants can help to understand self-assembly phenomena in deep eutectic solvents. Although no significant change was noticed in the micelle size and shape due to the exchange of the sodium counter-ion by choline in our simulations, the adsorption of the choline cation over the micelle surface is stronger than the adsorption of the sodium, which leads to a reduction of the exposed surface area of the micelle and remarkable effects over the electrostatic potential. The choline neutralizes the surface charge of the surfactant better than sodium; however, this is partially compensated by a stronger water orientation around the SDS micelle. The balance between the contributions from the surfactant, the counter-ion, and water to the electrostatic potential leads to a complex pattern with alternate regions of positive and negative potential at the micelle/water interface which can be important to the incorporation of other charged species at the micelle surface as well as for the interaction between micelles in solution. METHODS To evaluate the effects of the counter-ion substitution, micelles of sodium dodecyl sulfate (SDS) and choline dodecyl sulfate (ChDS) were studied and compared by means of molecular dynamics simulations in aqueous solution. In both cases, the simulations started from pre-assembled micelles with 60 dodecyl sulfate ions and 240-ns simulations were performed at NPT ensemble at T = 323.15 K and P = 1 bar using the Gromacs software with the OPLS-AA force field to describe dodecyl sulfate and choline, Åqvist parameters for sodium, and SPC model for water molecules.
Collapse
Affiliation(s)
- Rafaela Eliasquevici
- Laboratório de Química Computacional, Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz S/N, São Carlos, 13565-905, Brazil
| | - Kalil Bernardino
- Laboratório de Química Computacional, Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz S/N, São Carlos, 13565-905, Brazil.
| |
Collapse
|
2
|
Peng J, Song X, Li X, Jiang Y, Liu G, Wei Y, Xia Q. Molecular Dynamics Study on the Aggregation Behavior of Triton X Micelles with Different PEO Chain Lengths in Aqueous Solution. Molecules 2023; 28:molecules28083557. [PMID: 37110791 PMCID: PMC10146536 DOI: 10.3390/molecules28083557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The aggregation structure of Triton X (TX) amphiphilic molecules in aqueous solution plays an important role in determining the various properties and applications of surfactant solutions. In this paper, the properties of micelles formed by TX-5, TX-114, and TX-100 molecules with different poly(ethylene oxide) (PEO) chain lengths in TX series of nonionic surfactants were studied via molecular dynamics (MD) simulation. The structural characteristics of three micelles were analyzed at the molecular level, including the shape and size of micelles, the solvent accessible surface area, the radial distribution function, the micelle configuration, and the hydration numbers. With the increase of PEO chain length, the micelle size and solvent accessible surface area also increase. The distribution probability of the polar head oxygen atoms on the surface of the TX-100 micelle is higher than that in the TX-5 or TX-114 micelle. In particular, the tail quaternary carbon atoms in the hydrophobic region are mainly located at the micelle exterior. For TX-5, TX-114, and TX-100 micelles, the interactions between micelles and water molecules are also quite different. These structures and comparisons at the molecular level contribute to the further understanding of the aggregation and applications of TX series surfactants.
Collapse
Affiliation(s)
- Jin Peng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiaoju Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yongkang Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Qiying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
3
|
Sun L, Gong J, Xu B, Wang Y, Ding X, Zhang Y, Liu C, Zhao L, Xu B. Ion-Specific Effects on Vesicle-to-Micelle Transitions of an Amino Acid Surfactant Probed by Chemical Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6295-6304. [PMID: 35476409 DOI: 10.1021/acs.langmuir.1c03415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-specific effects widely exist in biological and chemical systems and cannot be explained by classical theories. The complexity of ion-specific effects in protein systems at the molecular level necessitates the use of mimetic models involving smaller molecules, such as amino acids, oligopeptides, and other organic molecules bearing amide bonds. Therefore, it is of theoretical value to determine the effect of additional salts on the aggregation transitions of acyl amino acid surfactants. Herein, the effects of specific tetraalkylammonium ions (TAA+) on sodium lauroyl glycinate (SLG) aggregation were studied by dynamic light scattering (DLS) and transmission electron microscopy. Although previous studies have shown that the kosmotropic TAA+ ions tend to induce micellar growth or micelle-to-vesicle transitions of some anionic surfactants, TAA+ addition in the present study induced partial vesicle-to-micelle transitions in SLG solutions. The chemical trapping (CT) method was employed to estimate changes in the interfacial molarities of water, amide bonds, and carboxylate groups during such transitions. The vesicle-to-micelle transitions were accompanied by a marked rise in interfacial water molarity and a decline in interfacial amide bonds molarity, suggesting that the hydrated TAA+ entered the interfacial region and disrupted hydrogen bonding, thus preventing the SLG monomers from packing tightly. Molecular dynamic simulation was also performed to demonstrate the salt-induced cleavage of amide-amide bonds between SLG headgroups. Furthermore, both CT and DLS results show that the ability of tetraalkylammonium cations to induce such transitions increased with increasing size and hydrophobicity of the cation, which follows the Hofmeister series. The current study offers critical molecular-level evidence for understanding the specific effects of tetraalkylammonium ions on the aggregation transitions of an acyl amino acid surfactant.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Jiani Gong
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Yuzhao Wang
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xiaoxuan Ding
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yongliang Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Changyao Liu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Li Zhao
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baocai Xu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
4
|
Enhanced oil recovery: QM/MM based descriptors for anionic surfactant salt-resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Wei Y, Liu G, Wang H, Xia Q, Yuan S. Exploring relationship of the state of N-dodecyl betaine in the solution monomer, at the interface and in the micelle via configurational entropy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Liu J, Li X, Hou J, Liu F. Electric-Field-Induced Interface Behavior of Dodecyl Sulfate with Large Organic Counterions: A Molecular Dynamics Study. J Phys Chem B 2020; 124:5498-5506. [PMID: 32520571 DOI: 10.1021/acs.jpcb.0c00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dodecyl sulfate with tetramethylammonium counterions has been employed to systematically investigate the influence of different static electric fields on molecular structural properties, surface tension, by adopting molecular dynamics (MD) simulations with IR and sum frequency generation (SFG) spectrum calculations. The results indicated that dodecyl sulfate (DS-) and large organic TMA+ counterions can form a mixed adsorption layer in which one head group of DS- is surrounded by two tetramethylammonium (TMA+) and one water molecule. Additionally, it was observed that the surface tension significantly decreases with the increasing static electric field strength since the surfactant stands straighter at the interface as the electric field increases. The result can be instructively adopted in the manufacturing field to control surface tension. Moreover, it was found that the SFG stretch intensities of methylene decrease and the stretch intensities of the methyl group increase with increasing static electric fields. The result indicated that the static electric fields can make DS- more orderly and upright at the interface.
Collapse
Affiliation(s)
- Jianchuan Liu
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy Sciences, Beijing 100049, China
| | - Xun Li
- Institute of Linguistics, Shanghai International Studies University, Shanghai 201600, China
| | - Jian Hou
- University of Chinese Academy Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fenghai Liu
- College of Physical and Electronics Engineering, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
7
|
Wang L, Sun N, Wang Z, Han H, Yang Y, Liu R, Hu Y, Tang H, Sun W. Self-assembly of mixed dodecylamine–dodecanol molecules at the air/water interface based on large-scale molecular dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Schaeffer N, Kholany M, Veloso TLM, Pereira JL, Ventura SPM, Nicaud JM, Coutinho JAP. Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chem Commun (Camb) 2019; 55:8643-8646. [DOI: 10.1039/c9cc03831k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tuneable and thermoresponsive ionic system is applied to the extraction and cloud-point separation of violacein from biomass.
Collapse
Affiliation(s)
- Nicolas Schaeffer
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Mariam Kholany
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Telma L. M. Veloso
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Joana Luísa Pereira
- Department of Biology and CESAM – Centre for Environmental and Marine Studies
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sónia P. M. Ventura
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Jean-Marc Nicaud
- Micalis Institute
- INRA
- AgroParisTech
- Université Paris-Saclay
- 78350 Jouy-en-Josas
| | - João A. P. Coutinho
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
9
|
Liu G, Feng J, Wang H, Gao F, Wei Y, Xia Q, Yuan S. The cloud point phenomenon of ionic surfactants: A view from molecular dynamics and metadynamics simulation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhang X, Patel LA, Beckwith O, Schneider R, Weeden CJ, Kindt JT. Extracting Aggregation Free Energies of Mixed Clusters from Simulations of Small Systems: Application to Ionic Surfactant Micelles. J Chem Theory Comput 2017; 13:5195-5206. [PMID: 28942641 DOI: 10.1021/acs.jctc.7b00671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - L A Patel
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - O Beckwith
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - R Schneider
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - C J Weeden
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - J T Kindt
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Wang L, Hu Y, Liu R, Liu J, Sun W. Synergistic adsorption of DDA/alcohol mixtures at the air/water interface: A molecular dynamics simulation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wei Y, Wang H, Liu G, Wang Z, Yuan S. A molecular dynamics study on two promising green surfactant micelles of choline dodecyl sulfate and laurate. RSC Adv 2016. [DOI: 10.1039/c6ra16536b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two green surfactants, made by dodecyl sulfate (DS−) and laurate (C12) with equimolar choline (Ch+) components as counterions, are studied through all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Yaoyao Wei
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Honglei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Guokui Liu
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Zhongni Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
13
|
Wei Y, Liu G, Wang Z, Yuan S. Molecular dynamics study on the aggregation behaviour of different positional isomers of sodium dodecyl benzenesulphonate. RSC Adv 2016. [DOI: 10.1039/c6ra05188j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic diagram of anionic structures (1Φ12 and 6Φ12).
Collapse
Affiliation(s)
- Yaoyao Wei
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Guokui Liu
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
- PR China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| |
Collapse
|