1
|
Rainot A, D'Anna L, Terenzi A, Rouget R, Grandemange S, Piro B, Barone G, Barbault F, Monari A. In Silico Design of a Solution-Gated Graphene Transistor Sensor for the Efficient Detection of Guanine Quadruplexes. J Phys Chem Lett 2024; 15:10881-10887. [PMID: 39441974 DOI: 10.1021/acs.jpclett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures present in diverse regions of the genome, such as telomeres and transcription initiators. Recently, the different biological roles of G4s have been evidenced as well as their role as biomarkers for tumors or viral infections. However, the fast and efficient detection of G4s in complex matrices remains elusive. In this contribution, by using long-scale molecular dynamics simulations, we propose the design of a biosensor based on organic field-effect transistors recognizing G4s. In particular, we show that the interaction of the G4s with the biosensor is translated into a change in the charge density profile, which correlates with the electrical transduction of the signal, thus allowing the detection of the nucleic acid structure. We also provide rules of thumb for the optimization of the design of the device and more generally for the integration of computationally driven design approaches.
Collapse
Affiliation(s)
- Aurianne Rainot
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Luisa D'Anna
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Raphael Rouget
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France
| | | | - Benoit Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Giampaolo Barone
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | | | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
2
|
Caricato M. A Perspective on the Simulation of Electronic Circular Dichroism and Circularly Polarized Luminescence Spectra in Chiral Solid Materials. J Phys Chem A 2024; 128:1197-1206. [PMID: 38295762 DOI: 10.1021/acs.jpca.3c08095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chiral materials have shown tremendous potential for many technological applications, such as optoelectronics, sensing, magnetism, information technology, and imaging. Characterization of these materials is mostly based on chiroptical spectroscopies, such as electronic circular dichroism (ECD) and circularly polarized luminescence (CPL). These experimental measurements would greatly benefit from theoretical simulations for interpretation of the spectra as well as predictions on new materials. While ECD and CPL simulations are well established for molecular systems, they are not for materials. In this Perspective, we describe the theoretical quantities necessary to simulate ECD and CPL spectra in oriented systems. Then, we discuss the approximate strategies currently used to perform these calculations, what computational machinery is already available to develop more general approaches, and some of the open challenges for the simulation of ECD and CPL spectra in solid materials. When methods that are as reliable and computationally efficient as those for molecules are developed, these simulations will provide invaluable insight and guidance for the rational design of optically active materials.
Collapse
Affiliation(s)
- Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Michaelis M, Cupellini L, Mensch C, Perry CC, Delle Piane M, Colombi Ciacchi L. Tidying up the conformational ensemble of a disordered peptide by computational prediction of spectroscopic fingerprints. Chem Sci 2023; 14:8483-8496. [PMID: 37592980 PMCID: PMC10430726 DOI: 10.1039/d3sc02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The most advanced structure prediction methods are powerless in exploring the conformational ensemble of disordered peptides and proteins and for this reason the "protein folding problem" remains unsolved. We present a novel methodology that enables the accurate prediction of spectroscopic fingerprints (circular dichroism, infrared, Raman, and Raman optical activity), and by this allows for "tidying up" the conformational ensembles of disordered peptides and disordered regions in proteins. This concept is elaborated for and applied to a dodecapeptide, whose spectroscopic fingerprint is measured and theoretically predicted by means of enhanced-sampling molecular dynamics coupled with quantum mechanical calculations. Following this approach, we demonstrate that peptides lacking a clear propensity for ordered secondary-structure motifs are not randomly, but only conditionally disordered. This means that their conformational landscape, or phase-space, can be well represented by a basis-set of conformers including about 10 to 100 structures. The implications of this finding have profound consequences both for the interpretation of experimental electronic and vibrational spectral features of peptides in solution and for the theoretical prediction of these features using accurate and computationally expensive techniques. The here-derived methods and conclusions are expected to fundamentally impact the rationalization of so-far elusive structure-spectra relationships for disordered peptides and proteins, towards improved and versatile structure prediction methods.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 Pisa I-56124 Italy
| | - Carl Mensch
- Molecular Spectroscopy Research Group, Department of Chemistry, University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Massimo Delle Piane
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, University of Bremen Am Fallturm 1 Bremen 28359 Germany
| |
Collapse
|
4
|
Asha H, Green JA, Esposito L, Santoro F, Improta R. Computing the electronic circular dichroism spectrum of DNA quadruple helices of different topology: A critical test for a generalized excitonic model based on a fragment diabatization. Chirality 2023; 35:298-310. [PMID: 36775278 DOI: 10.1002/chir.23540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023]
Abstract
In this study, we exploit a recently developed fragment diabatization-based excitonic model, FrDEx, to simulate the electronic circular dichroism (ECD) spectra of three guanine-rich DNA sequences arranged in guanine quadruple helices with different topologies: thrombin binding aptamer (antiparallel), c-Myc promoter (parallel), and human telomeric sequence (3+1 hybrid). Starting from time-dependent density functional theory (TD-DFT) calculations with the M052X functional, we apply our protocol to parameterize the FrDEX Hamiltonian, which accounts for electron density overlap and includes both the coupling with charge transfer transitions and the effect of the surrounding bases on the local excitation of each chromophore. The TD-DFT/M052X spectral shapes are in good agreement with the experimental ones, the main source of discrepancy being related to the intrinsic error on the computed transition energies of guanine monomer. FrDEx spectra are fairly close to the reference TD-DFT ones, allowing a significant advance with respect to a more standard excitonic Hamiltonian. We also show that the ECD spectra are sensitive to the inclusion of the inner K + $$ {}^{+} $$ cation in the calculation.
Collapse
Affiliation(s)
- Haritha Asha
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - James A Green
- Institut für Physikalische Theoretische Chemie, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Pisa, Italy
| | | |
Collapse
|
5
|
Balanikas E, Gustavsson T, Markovitsi D. Fluorescence of Bimolecular Guanine Quadruplexes: From Femtoseconds to Nanoseconds. J Phys Chem B 2023; 127:172-179. [PMID: 36577031 DOI: 10.1021/acs.jpcb.2c07647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The paper deals with the fluorescence of guanine quadruplexes (G4) formed by association of two DNA strands d(GGGGTTTTGGGG) in the presence of K+ cations, noted as OXY/K+ in reference to the protozoon Oxytricha nova, whose telomere contains TTTTGGGG repeats. They were studied by steady-state and time-resolved techniques, time-correlated single photon counting, and fluorescence upconversion. The maximum of the OXY/K+ fluorescence spectrum is located at 334 nm, and the quantum yield is 5.8 × 10-4. About 75% of the photons are emitted before 100 ps and stem from ππ* states, possibly with a small contribution of charge transfer. Time-resolved fluorescence anisotropy measurements indicate that ultrafast (<330 fs) excitation transfer, due to internal conversion among exciton states, is more efficient in OXY/K+ compared to previously studied G4 structures. This is attributed to the arrangement of the peripheral thymines in two diagonal loops with restricted mobility, facilitating the interaction among them and with guanines. Thymines should also be responsible for a weak intensity excimer/exciplex emission band, peaking at 445 nm. Finally, the longest living fluorescence component (∼2.1 ns) is observed at the blue side of the spectrum. So far, high-energy long-lived emitting states had been reported only for double-stranded structures but not for G4.
Collapse
Affiliation(s)
| | - Thomas Gustavsson
- CEA, CNRS, LIDYL, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- CEA, CNRS, LIDYL, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.,CNRS, Institut de Chimie Physique, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
6
|
Asha H, Green JA, Esposito L, Martinez-Fernandez L, Santoro F, Improta R. Effect of the Thermal Fluctuations of the Photophysics of GC and CG DNA Steps: A Computational Dynamical Study. J Phys Chem B 2022; 126:10608-10621. [PMID: 36508709 DOI: 10.1021/acs.jpcb.2c05688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we refine and assess two computational procedures aimed to include the effect of thermal fluctuations on the electronic spectra and the ultrafast excited state dynamics of multichromophore systems, focusing on DNA duplexes. Our approach is based on a fragment diabatization procedure that, from a given Quantum Mechanical (QM) reference method, can provide the parameters (energy and coupling) of the reference diabatic states on the basis of the isolated fragments, either for a purely electronic excitonic Hamiltonian (FrDEx) or a linear vibronic coupling Hamiltonian (FrD-LVC). After having defined the most cost-effective procedure for DNA duplexes on two smaller fragments, FrDEx is used to simulate the absorption and Electronic Circular Dichroism (ECD) spectra of (GC)5 sequences, including the coupling with the Charge Transfer (CT) states, on a number of structures extracted from classical Molecular Dynamics (MD) simulations. The computed spectra are close to the reference TD-DFT calculations and fully consistent with the experimental ones. We then couple MD simulations and FrD-LVC to simulate the interplay between local excitations and CT transitions, both intrastrand and interstrand, in GC and CG steps when included in a oligoGC or in oligoAT DNA sequence. We predict that for both sequences a substantial part of the photoexcited population on G and C decays, within 50-100 fs, to the corresponding intrastrand CT states. This transfer is more effective for GC steps that, on average, are more closely stacked than CG ones.
Collapse
Affiliation(s)
- Haritha Asha
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy
| | - James A Green
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy.,Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438Frankfurt am Main, Germany
| | - Luciana Esposito
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autònoma de Madrid, Campus de Excelencia UAM-CSIC, 28049Madrid, Spain
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124Pisa, Italy
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95,I-80145Napoli, Italy.,DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Asha H, Stadlbauer P, Martínez-Fernández L, Banáš P, Šponer J, Improta R, Esposito L. Early steps of oxidative damage in DNA quadruplexes are position-dependent: Quantum mechanical and molecular dynamics analysis of human telomeric sequence containing ionized guanine. Int J Biol Macromol 2022; 194:882-894. [PMID: 34838862 DOI: 10.1016/j.ijbiomac.2021.11.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Guanine radical cation (G•+) is a key intermediate in many oxidative processes occurring in nucleic acids. Here, by combining mixed Quantum Mechanical/Molecular Mechanics calculations and Molecular Dynamics (MD) simulations, we study how the structural behaviour of a tract GGG(TTAGGG)3 (hereafter Tel21) of the human telomeric sequence, folded in an antiparallel quadruple helix, changes when one of the G bases is ionized to G•+ (Tel21+). Once assessed that the electron-hole is localized on a single G, we perform MD simulations of twelve Tel21+ systems, differing in the position of G•+ in the sequence. When G•+ is located in the tetrad adjacent to the diagonal loop, we observe substantial structural rearrangements, which can decrease the electrostatic repulsion with the inner Na+ ions and increase the solvent exposed surface of G•+. Analysis of solvation patterns of G•+ provides new insights on the main reactions of G•+, i.e. the deprotonation at two different sites and hydration at the C8 atom, the first steps of the processes producing 8oxo-Guanine. We suggest the main structural determinants of the relative reactivity of each position and our conclusions, consistent with the available experimental trends, can help rationalizing the reactivity of other G-quadruplex topologies.
Collapse
Affiliation(s)
- Haritha Asha
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lara Martínez-Fernández
- Departamento de Quimica, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autonoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| | - Luciana Esposito
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| |
Collapse
|
8
|
Asha H, Green JA, Martinez-Fernandez L, Esposito L, Improta R. Electronic Circular Dichroism Spectra of DNA Quadruple Helices Studied by Molecular Dynamics Simulations and Excitonic Calculations including Charge Transfer States. Molecules 2021; 26:molecules26164789. [PMID: 34443377 PMCID: PMC8398971 DOI: 10.3390/molecules26164789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
We here investigate the Electronic Circular Dichroism (ECD) Spectra of two representative Guanine-rich sequences folded in a Quadruple helix (GQ), by using a recently developed fragment diabatisation based excitonic model (FrDEx). FrDEx can include charge transfer (CT) excited states and consider the effect of the surrounding monomers on the local excitations (LEs). When applied to different structures generated by molecular dynamics simulations on a fragment of the human telomeric sequence (Tel21/22), FrDEx provides spectra fully consistent with the experimental one and in good agreement with that provided by quantum mechanical (QM) method used for its parametrization, i.e., TD-M05-2X. We show that the ECD spectrum is moderately sensitive to the conformation adopted by the bases of the loops and more significantly to the thermal fluctuations of the Guanine tetrads. In particular, we show how changes in the overlap of the tetrads modulate the intensity of the ECD signal. We illustrate how this correlates with changes in the character of the excitonic states at the bottom of the La and Lb bands, with larger LE and CT involvement of bases that are more closely stacked. As an additional test, we utilised FrDEx to compute the ECD spectrum of the monomeric and dimeric forms of a GQ forming sequence T30695 (5′TGGGTGGGTGGGTGGG3′), i.e., a system containing up to 24 Guanine bases, and demonstrated the satisfactory reproduction of the experimental and QM reference results. This study provides new insights on the effects modulating the ECD spectra of GQs and, more generally, further validates FrDEx as an effective tool to predict and assign the spectra of closely stacked multichromophore systems.
Collapse
Affiliation(s)
- Haritha Asha
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy; (H.A.); (J.A.G.); (L.E.)
| | - James A. Green
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy; (H.A.); (J.A.G.); (L.E.)
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and IADCHEM (Institute for Advanced Research in Chemistry), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain;
| | - Luciana Esposito
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy; (H.A.); (J.A.G.); (L.E.)
| | - Roberto Improta
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy; (H.A.); (J.A.G.); (L.E.)
- Correspondence:
| |
Collapse
|
9
|
Kaminský J, Andrushchenko V, Bouř P. Natural and magnetic circular dichroism spectra of nucleosides: effect of the dynamics and environment. RSC Adv 2021; 11:8411-8419. [PMID: 35423314 PMCID: PMC8695171 DOI: 10.1039/d1ra00076d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Chiroptical spectroscopic methods are excellent tools to study structure and interactions of biomolecules. However, their sensitivity to different structural aspects varies. To understand the dependence of absorption, electronic and magnetic circular dichroism (ECD, MCD) intensities on the structure, dynamics and environment, we measured and simulated spectra of nucleosides and other nucleic acid model components. The conformation space was explored by molecular dynamics (MD), the electronic spectra were generated using time dependent density functional theory (TDDFT). The sum over state (SOS) method was employed for MCD. The results show that accounting for the dynamics is crucial for reproduction of the experiment. While unpolarized absorption spectroscopy is relatively indifferent, ECD reflects the conformation and geometry dispersion more. MCD spectra provide variable response dependent on the wavelength and structural change. In general, MCD samples the structure more locally than ECD. Simple computational tests suggest that the optical spectroscopies coupled with the computational tools provide useful information about nucleic acid components, including base pairing and stacking.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
10
|
Green JA, Asha H, Santoro F, Improta R. Excitonic Model for Strongly Coupled Multichromophoric Systems: The Electronic Circular Dichroism Spectra of Guanine Quadruplexes as Test Cases. J Chem Theory Comput 2021; 17:405-415. [PMID: 33378185 DOI: 10.1021/acs.jctc.0c01100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We here propose a general and flexible approach, based on fragment diabatization, which incorporates charge transfer states and significantly increases the reliability of excitonic Hamiltonians for systems where the chromophores are very close. This model (FrDEx) is used to compute the electronic circular dichroism and absorption spectra of two prototype guanine-rich DNA sequences folded in quadruple helices (GQs), i.e., a fragment of the human telomeric sequence (Tel21, antiparallel), and (TGGGGT)4 (TG4T, parallel). Calculations on different subsets of Tel21 and TG4T, from dimers to tetramers, show that FrDEx provides spectra close to the reference full quantum mechanical (QM) ones (obtained with time-dependent density functional theory), with significant improvements with respect to "standard" excitonic Hamiltonians. Furthermore, these tests enable the most cost-effective procedure for the whole GQ to be determined. FrDEx spectra of Tel21 and TG4T are also in good agreement with the QM and experimental ones and give access to interesting insights into the chemical-physical effects modulating the spectral signals. FrDEx could be profitably used to investigate many other biological and nanotechnological materials, from DNA to (opto)electronic polymers.
Collapse
Affiliation(s)
- James A Green
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Haritha Asha
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| |
Collapse
|
11
|
Martínez-Fernández L, Esposito L, Improta R. Studying the excited electronic states of guanine rich DNA quadruplexes by quantum mechanical methods: main achievements and perspectives. Photochem Photobiol Sci 2020; 19:436-444. [DOI: 10.1039/d0pp00065e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calculations are providing more and more useful insights into the interaction between light and DNA quadruplexes.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química
- Facultad de Ciencias
- Modulo 13 Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- 28049 Madrid
| | | | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini
- CNR
- I-80134 Napoli
- Italy
| |
Collapse
|
12
|
Terenzi A, Gattuso H, Spinello A, Keppler BK, Chipot C, Dehez F, Barone G, Monari A. Targeting G-quadruplexes with Organic Dyes: Chelerythrine-DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy. Antioxidants (Basel) 2019; 8:antiox8100472. [PMID: 31658666 PMCID: PMC6826623 DOI: 10.3390/antiox8100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023] Open
Abstract
The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences—representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences—have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE–DNA binding modes. The binding selectivity towards G-quadruplexes is confirmed by both experimental and theoretical determination of the binding free energies. Overall, our mixed computational and experimental approach is able to shed light on the interaction of small molecules with different DNA conformations. In particular, CHE may be seen as the building block of promising drug candidates specifically targeting G-quadruplexes for both antitumoral and antiviral purposes.
Collapse
Affiliation(s)
- Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
| | - Hugo Gattuso
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Angelo Spinello
- CNR-IOM DEMOCRITOS c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
| | - Christophe Chipot
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
13
|
Cupellini L, Corbella M, Mennucci B, Curutchet C. Electronic energy transfer in biomacromolecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale University of Pisa Pisa Italy
| | - Marina Corbella
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC‐UB), Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale University of Pisa Pisa Italy
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica and Institut de Química Teòrica i Computacional (IQTC‐UB), Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona Spain
| |
Collapse
|
14
|
Marazzi M, Gattuso H, Monari A, Assfeld X. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules. Front Chem 2018; 6:86. [PMID: 29666792 PMCID: PMC5891624 DOI: 10.3389/fchem.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Collapse
Affiliation(s)
- Marco Marazzi
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France.,Departamento de Química, Centro de Investigacíon en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Hugo Gattuso
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
15
|
Ianeselli A, Orioli S, Spagnolli G, Faccioli P, Cupellini L, Jurinovich S, Mennucci B. Atomic Detail of Protein Folding Revealed by an Ab Initio Reappraisal of Circular Dichroism. J Am Chem Soc 2018; 140:3674-3682. [DOI: 10.1021/jacs.7b12399] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alan Ianeselli
- Centre for Integrative Biology, Trento University, Via Sommarive 9, 38128 Povo, Trento, Italy
| | - Simone Orioli
- Physics Department, Trento University, Via Sommarive 14, 38128 Povo, Trento, Italy
- INFN-TIFPA, Via Sommarive 14, 38128 Povo, Trento, Italy
| | - Giovanni Spagnolli
- Centre for Integrative Biology, Trento University, Via Sommarive 9, 38128 Povo, Trento, Italy
| | - Pietro Faccioli
- Physics Department, Trento University, Via Sommarive 14, 38128 Povo, Trento, Italy
- INFN-TIFPA, Via Sommarive 14, 38128 Povo, Trento, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
16
|
Shiraogawa T, Ehara M, Jurinovich S, Cupellini L, Mennucci B. Frenkel-exciton decomposition analysis of circular dichroism and circularly polarized luminescence for multichromophoric systems. J Comput Chem 2018; 39:931-935. [DOI: 10.1002/jcc.25169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Takafumi Shiraogawa
- SOKENDAI, The Graduate University for Advanced Studies, Nishigonaka; Myodaiji Okazaki 444-8585 Japan
| | - Masahiro Ehara
- SOKENDAI, The Graduate University for Advanced Studies, Nishigonaka; Myodaiji Okazaki 444-8585 Japan
- Institute for Molecular Science and Research Center for Computational Science, Nishigonaka; Myodaiji Okazaki 444-8585 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB); Kyoto University; Kyoto 615-8520 Japan
| | - Sandro Jurinovich
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| |
Collapse
|
17
|
Šmidlehner T, Piantanida I, Pescitelli G. Polarization spectroscopy methods in the determination of interactions of small molecules with nucleic acids - tutorial. Beilstein J Org Chem 2018; 14:84-105. [PMID: 29441133 PMCID: PMC5789433 DOI: 10.3762/bjoc.14.5] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
The structural characterization of non-covalent complexes between nucleic acids and small molecules (ligands) is of a paramount significance to bioorganic research. Highly informative methods about nucleic acid/ligand complexes such as single crystal X-ray diffraction or NMR spectroscopy cannot be performed under biologically compatible conditions and are extensively time consuming. Therefore, in search for faster methods which can be applied to conditions that are at least similar to the naturally occurring ones, a set of polarization spectroscopy methods has shown highly promising results. Electronic circular dichroism (ECD) is the most commonly used method for the characterization of the helical structure of DNA and RNA and their complexes with ligands. Less common but complementary to ECD, is flow-oriented linear dichroism (LD). Other methods such as vibrational CD (VCD) and emission-based methods (FDCD, CPL), can also be used for suitable samples. Despite the popularity of polarization spectroscopy in biophysics, aside several highly focused reviews on the application of these methods to DNA/RNA research, there is no systematic tutorial covering all mentioned methods as a tool for the characterization of adducts between nucleic acids and small ligands. This tutorial aims to help researchers entering the research field to organize experiments accurately and to interpret the obtained data reliably.
Collapse
Affiliation(s)
- Tamara Šmidlehner
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute; P. O. Box 180, 10002 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute; P. O. Box 180, 10002 Zagreb, Croatia
| | - Gennaro Pescitelli
- Department of Chemistry, University of Pisa, via Moruzzi 13, Pisa, Italy
| |
Collapse
|
18
|
Cerezo J, Liu Y, Lin N, Zhao X, Improta R, Santoro F. Mixed Quantum/Classical Method for Nonadiabatic Quantum Dynamics in Explicit Solvent Models: The ππ*/nπ* Decay of Thymine in Water as a Test Case. J Chem Theory Comput 2018; 14:820-832. [PMID: 29207245 DOI: 10.1021/acs.jctc.7b01015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel mixed quantum classical dynamical method to include solvent effects on internal conversion (IC) processes. All the solute degrees of freedom are represented by a wavepacket moving according to nonadiabatic quantum dynamics, while the motion of an explicit solvent model is described by an ensemble of classical trajectories. The mutual coupling of the solute and solvent dynamics is included within a mean-field framework and the quantum and classical equations of motions are solved simultaneously. As a test case we apply our method to the ultrafast ππ* → nπ* decay of thymine in water. Solvent dynamical response modifies IC yield already on the 50 fs time scale. This effect is due to water librational motions that stabilize the most populated state. Pure static disorder, that is, the existence of different solvent configurations when photoexcitation takes place, also has a remarkable impact on the dynamics.
Collapse
Affiliation(s)
- Javier Cerezo
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR) , SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.,Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Yanli Liu
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR) , SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.,School of Physics and Optoelectronics Engineering, Ludong University , 264025 Yantai, P. R. China
| | - Na Lin
- State Key Laboratory of Crystal Materials, Shandong University , 250100 Jinan, Shandong, P. R. China
| | - Xian Zhao
- State Key Laboratory of Crystal Materials, Shandong University , 250100 Jinan, Shandong, P. R. China
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR) , via Mezzocannone 16, I-80136 Napoli, Italy.,LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR) , SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
19
|
Jurinovich S, Cupellini L, Guido CA, Mennucci B. EXAT: EXcitonic analysis tool. J Comput Chem 2017; 39:279-286. [PMID: 29151259 DOI: 10.1002/jcc.25118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
Abstract
We introduce EXcitonic Analysis Tool (EXAT), a program able to compute optical spectra of large excitonic systems directly from the output of quantum mechanical calculations performed with the popular Gaussian 16 package. The software is able to combine in an excitonic scheme the single-chromophore properties and exciton couplings to simulate energies, coefficients, and excitonic spectra (UV-vis, CD, and LD). The effect of the environment can also be included using a Polarizable Continuum Model. EXAT also presents a simple graphical user interface, which shows on-screen both site and exciton properties. To show the potential of the method, we report two applications on a a chiral perturbed BODIPY system and DNA G-quadruplexes, respectively. The program is available online at http://molecolab.dcci.unipi.it/tools/. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandro Jurinovich
- Dipartimento di Chimica, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| | - Ciro A Guido
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Benedetta Mennucci
- Dipartimento di Chimica, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
20
|
Gattuso H, García-Iriepa C, Sampedro D, Monari A, Marazzi M. Simulating the Electronic Circular Dichroism Spectra of Photoreversible Peptide Conformations. J Chem Theory Comput 2017; 13:3290-3296. [DOI: 10.1021/acs.jctc.7b00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hugo Gattuso
- Théorie-Modélisation-Simulation, Université de Lorraine − Nancy, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
- Théorie-Modélisation-Simulation,
CNRS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
| | - Cristina García-Iriepa
- Departamento
de Química, Centro de Investigación en Síntesis
Química (CISQ), Universidad de La Rioja, Madre de Dios
53, E-26006 Logroño, Spain
- Unidad
Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Diego Sampedro
- Departamento
de Química, Centro de Investigación en Síntesis
Química (CISQ), Universidad de La Rioja, Madre de Dios
53, E-26006 Logroño, Spain
| | - Antonio Monari
- Théorie-Modélisation-Simulation, Université de Lorraine − Nancy, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
- Théorie-Modélisation-Simulation,
CNRS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
| | - Marco Marazzi
- Théorie-Modélisation-Simulation, Université de Lorraine − Nancy, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
- Théorie-Modélisation-Simulation,
CNRS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Nancy, France
| |
Collapse
|
21
|
Padula D, Jurinovich S, Di Bari L, Mennucci B. Simulation of Electronic Circular Dichroism of Nucleic Acids: From the Structure to the Spectrum. Chemistry 2016; 22:17011-17019. [PMID: 27699878 DOI: 10.1002/chem.201602777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 12/18/2022]
Abstract
We present a quantum mechanical (QM) simulation of the electronic circular dichroism (ECD) of nucleic acids (NAs). The simulation combines classical molecular dynamics, to obtain the structure and its temperature-dependent fluctuations, with a QM excitonic model to determine the ECD. The excitonic model takes into account environmental effects through a polarizable embedding and uses a refined approach to calculate the electronic couplings in terms of full transition densities. Three NAs with either similar conformations but different base sequences or similar base sequences but different conformations have been investigated and the results were compared with experimental observations; a good agreement was seen in all cases. A detailed analysis of the nature of the ECD bands in terms of their excitonic composition was also carried out. Finally, a comparison between the QM and the DeVoe models clearly revealed the importance of including fluctuations of the excitonic parameters and of accurately determining the electronic couplings. This study demonstrates the feasibility of the ab initio simulation of the ECD spectra of NAs, that is, without the need of experimental structural or electronic data.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
22
|
Padula D, Di Bari L, Pescitelli G. The “Case of Two Compounds with Similar Configuration but Nearly Mirror Image CD Spectra” Refuted. Reassignment of the Absolute Configuration of N-Formyl-3′,4′-dihydrospiro[indan-1,2′(1′H)-pyridine]. J Org Chem 2016; 81:7725-32. [DOI: 10.1021/acs.joc.6b01416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Padula
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi
13, 56124 Pisa, Italy
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Lorenzo Di Bari
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi
13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi
13, 56124 Pisa, Italy
| |
Collapse
|
23
|
Gattuso H, Spinello A, Terenzi A, Assfeld X, Barone G, Monari A. Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures. J Phys Chem B 2016; 120:3113-21. [DOI: 10.1021/acs.jpcb.6b00634] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo Gattuso
- Theory-Modeling-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Angelo Spinello
- Dipartimento
di Scienze Biologiche, Chimiche e Farmaceutiche, Universitá di Palermo, Viale delle Scienze, Palermo, Italy
| | - Alessio Terenzi
- Dipartimento
di Scienze Biologiche, Chimiche e Farmaceutiche, Universitá di Palermo, Viale delle Scienze, Palermo, Italy
- Institute
of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, Vienna, Austria
| | - Xavier Assfeld
- Theory-Modeling-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Giampaolo Barone
- Dipartimento
di Scienze Biologiche, Chimiche e Farmaceutiche, Universitá di Palermo, Viale delle Scienze, Palermo, Italy
| | - Antonio Monari
- Theory-Modeling-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|