1
|
Kim J, Kang M, Kim SK. Photodissociation dynamics of m- and p-cresol in the S1 state: Interplay between the mode-randomization and H atom tunneling reaction. J Chem Phys 2023; 159:184304. [PMID: 37962447 DOI: 10.1063/5.0176516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The H atom tunneling dissociation dynamics of the S1 state of meta- or para-cresol has been investigated by using the picosecond time-resolved pump-probe spectroscopy in a state-specific manner. The S1 state lifetime (mainly due to the H atom tunneling reaction) is found to be mode-dependent whereas it quickly converges and remains constant as the rapid intramolecular vibrational energy redistribution (IVR) starts to participate in the S1 state relaxation with the increase of the S1 internal energy (Eint). The IVR rate and its change with increasing Eint have been reflected in the parent ion transients taken by tuning the total energy (hνpump + hνprobe) just above the adiabatic ionization threshold (so that the dissipation of the initial mode-character could be monitored as a function of the reaction time), indicating that the mode randomization rate into the S1 isoenergetic manifolds exceeds the tunneling rate quite early in terms of Eint for m-cresol (≤∼1200 cm-1) or p-cresol (≤∼800 cm-1) compared to the case of phenol (≤∼1800 cm-1). Though the H atom tunneling dynamics of phenol (S1) seems to be little influenced by the methyl substitution on the either m- or p-position, the IVR rate has been found to be strongly accelerated due to the sharply-increasing (S1) density of states with increasing Eint due to the pivotal role of the low-frequency CH3 torsional mode.
Collapse
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Minseok Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Kim J, Woo KC, Kim KK, Kang M, Kim SK. Tunneling dynamics dictated by the multidimensional conical intersection seam in the πσ*‐mediated photochemistry of heteroaromatic molecules. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST Daejeon Republic of Korea
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Kuk Ki Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Minseok Kang
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| |
Collapse
|
3
|
Kida M, Wada K, Muramatsu S, Shang R, Yamamoto Y, Inokuchi Y. Spherand complexes with Li + and Na + ions in the gas phase: encapsulation structure and characteristic unimolecular dissociation. Phys Chem Chem Phys 2021; 23:25029-25037. [PMID: 34610066 DOI: 10.1039/d1cp03336k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the complexes of Cram's hexa(p-anisole) spherands (SPR, 1) with Li+ and Na+ ions (1·Li+ and 1·Na+) isolated in the gas phase. Despite the small conformational difference between 1·Li+ and 1·Na+ owing to the rigid framework of 1, ultraviolet photodissociation (UVPD) spectroscopy under cryogenic (∼10 K) conditions yielded clearly distinguishable absorption edges: ∼34 000 and ∼34 500 cm-1 for 1·Li+ and 1·Na+, respectively. The spectral assignment and the preorganization characteristics of the host molecule were compared with those of dibenzo-18-crown-6-ether (DB18C6) complexes, which have more flexible frameworks. Furthermore, we revealed the characteristic unimolecular dissociation of the 1·Li+ complex using UVPD and collision-induced dissociation (CID); the formation of fragment ions with dibenzofuran moieties was detected. This dissociation pattern was ascribed to the efficient release of dimethyl ether molecule(s) from the 1·Li+ complex, which is characteristic of the cyclic skeleton formed with six methoxy groups in the SPR.
Collapse
Affiliation(s)
- Motoki Kida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Kanako Wada
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Satoru Muramatsu
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
4
|
Kim KK, Kim J, Woo KC, Kim SK. S 1-State Decay Dynamics of Benzenediols (Catechol, Resorcinol, and Hydroquinone) and Their 1:1 Water Clusters. J Phys Chem A 2021; 125:7655-7661. [PMID: 34432455 DOI: 10.1021/acs.jpca.1c05448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The S1-state decaying rates of the three different benzenediols, catechol, resorcinol, and hydroquinone, and their 1:1 water clusters have been state-specifically measured using the picosecond time-resolved parent ion transients obtained by the pump (excitation) and probe (ionization) scheme. The S1 lifetime of catechol is found to be short, giving τ ∼ 5.9 ps at the zero-point level. This is ascribed to the H-atom detachment from the free OH moiety of the molecule. Consistent with a previous report (J. Phys. Chem. Lett. 2013, 4, 3819-3823), the S1 lifetime gets lengthened with low-frequency vibrational mode excitations, giving τ ∼ 9.0 ps for the 116 cm-1 band. The S1 lifetimes at the additional vibronic modes of catechol are newly measured, showing the nonnegligible mode-dependent fluctuations of the tunneling rate. When catechol is complexed with water, the S1 lifetime is enormously increased to τ ∼ 1.80 ns at the zero-point level while it shows an unusual dip at the intermolecular stretching mode excitation (τ ∼ 1.03 ns at 146 cm-1). Otherwise, it is shortened monotonically with increasing the internal energy, giving τ ∼ 0.67 ns for the 856 cm-1 band. Two different asymmetric or symmetric conformers of resorcinol give the respective S1 lifetimes of 4.5 or 6.3 ns at their zero-point levels according to the estimation from our transients taken within the temporal window of 0-2.7 ns. When resorcinol is 1:1 complexed with H2O, the S1 decaying rate is slightly accelerated for both conformers. The S1 lifetimes of trans and cis forms of hydroquinone are measured to be more or less same, giving τ ∼ 2.8 ns at the zero-point level. When H2O is complexed with hydroquinone, the S1 decaying process is facilitated for both conformers, slightly more efficiently for the cis conformer.
Collapse
Affiliation(s)
- Kuk Ki Kim
- Department of Chemistry, KAIST, Dajeon 34141, Republic of Korea
| | - Junggil Kim
- Department of Chemistry, KAIST, Dajeon 34141, Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST, Dajeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Dajeon 34141, Republic of Korea
| |
Collapse
|
5
|
Baghdasaryan A, Brun E, Wang Y, Salassa G, Lacour J, Bürgi T. Combined spectroscopic studies on post-functionalized Au 25 cluster as an ATR-FTIR sensor for cations. Chem Sci 2021; 12:7419-7427. [PMID: 34163832 PMCID: PMC8171333 DOI: 10.1039/d1sc01654g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, significant research activity has been devoted to thiolate-protected gold clusters due to their attractive optical and electronic properties. These properties as well as solubility and stability can be controlled by post-synthetic modification strategies. Herein, the ligand exchange reaction between Au25(2-PET)18 cluster (where 2-PET is 2-phenylethanethiol) and di-thiolated crown ether (t-CE) ligands bearing two chromophores was studied. The post-functionalization aimed to endow the cluster with ion binding properties. The exchange reaction was followed in situ by UV-vis, 1H NMR and HPLC. MALDI mass analysis revealed the incorporation of up to 5 t-CE ligands into the ligand shell. Once functionalized MALDI furthermore showed complexation of sodium ions to the cluster. ATR-FTIR spectroscopic studies using aqueous solutions of K+, Ba2+, Gd3+ and Eu3+ showed noticeable spectral shifts of the C-O stretching band around 1100 cm-1 upon complexation. Further spectral changes point towards a conformational change of the two chromophores that are attached to the crown ether. Density functional theory calculations indicate that the di-thiol ligand bridges two staple units on the cluster. The calculations furthermore reproduce the spectral shift of the C-O stretching vibrations upon complex formation and reveal a conformational change that involves the two chromophores attached to the crown ether. The functionalized clusters have therefore attractive ion sensing properties due to the combination of binding properties, mainly due to the crown ether, and the possibility for signal transduction via an induced conformational change involving chromophore units.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Elodie Brun
- Department of Organic Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Yuming Wang
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Giovanni Salassa
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
6
|
Iida Y, Kinoshita SN, Kenjo S, Muramatsu S, Inokuchi Y, Zhu C, Ebata T. Electronic States and Nonradiative Decay of Cold Gas-Phase Cinnamic Acid Derivatives Studied by Laser Spectroscopy with a Laser-Ablation Technique. J Phys Chem A 2020; 124:5580-5589. [PMID: 32551660 DOI: 10.1021/acs.jpca.0c03646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed UV spectroscopy for p-coumaric acid (pCA), ferulic acid (FA), and caffeic acid (CafA) under jet-cooled gas-phase conditions by using a laser-ablation source. These molecules showed the S1(1ππ*)-S0 absorption in the 31 500-33 500 cm-1 region. Both pCA and FA exhibited sharp vibronic bands, while CafA showed only a broad feature. The decay time profile of the 1ππ* state was measured by picosecond pump-probe spectroscopy, and the transient state produced through the nonradiative decay (NRD) from 1ππ* and its time profile were measured by nanosecond UV-deep UV pump-probe spectroscopy. The transient state was observed for pCA and FA and assigned to the T1 state, and we concluded that the NRD process of 1ππ* is S1(1ππ*) → 1nπ* → T1(3ππ*), similar to those of methyl cinnamate and para-substituted cinnamates such as p-hydroxy and p-methoxy methyl cinnamate. On the other hand, the transient T1 state was not detected in CafA, and its NRD route is suggested to be S1(1ππ*) → 1πσ* → H atom elimination, similar to those of phenol and catechol. The effect of a hydrogen bond on the electronic state and NRD process was investigated, and it was found that the H-bonding lowers the 1ππ* energy and suppresses the NRD process for all the species.
Collapse
Affiliation(s)
- Yuji Iida
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shin-Nosuke Kinoshita
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Seiya Kenjo
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoru Muramatsu
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute for Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Applied Chemistry and Institute for Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
Cho J, Verwilst P, Kang M, Pan JL, Sharma A, Hong CS, Kim JS, Kim S. Crown ether-appended calix[2]triazolium[2]arene as a macrocyclic receptor for the recognition of the H2PO4−anion. Chem Commun (Camb) 2020; 56:1038-1041. [DOI: 10.1039/c9cc08906c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis of a crown ether-appended calix[2]triazolium[2]arene receptor that shows excellent selectivity for H2PO4−and the binding ability and mode of the receptor to H2PO4−were demonstrated by1H NMR studies and DFT calculation.
Collapse
Affiliation(s)
- Jihee Cho
- College of Pharmacy
- Seoul National University
- Gwanak-gu
- Korea
| | | | | | - Jia-Lin Pan
- Department of Chemistry
- Korea University
- Korea
| | - Amit Sharma
- Department of Chemistry
- Korea University
- Korea
| | | | | | - Sanghee Kim
- College of Pharmacy
- Seoul National University
- Gwanak-gu
- Korea
| |
Collapse
|
8
|
Kida M, Kubo M, Ujihira T, Ebata T, Abe M, Inokuchi Y. Selective Probing of Potassium Ion in Solution by Intramolecular Excimer Fluorescence of Dibenzo-Crown Ethers. Chemphyschem 2018. [DOI: 10.1002/cphc.201800163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Motoki Kida
- Department of Chemistry, Graduate School of Science; Hiroshima University; Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Mayuko Kubo
- Department of Chemistry, Graduate School of Science; Hiroshima University; Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Tomoyuki Ujihira
- Department of Chemistry, Graduate School of Science; Hiroshima University; Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science; Hiroshima University; Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science; Hiroshima University; Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science; Hiroshima University; Higashi-Hiroshima, Hiroshima 739-8526 Japan
| |
Collapse
|