1
|
Li C, Li K, Liu X, Ruan H, Zheng M, Yu Z, Gai J, Yang S. Transcription Factor GmWRKY46 Enhanced Phosphate Starvation Tolerance and Root Development in Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:700651. [PMID: 34594347 PMCID: PMC8477037 DOI: 10.3389/fpls.2021.700651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients, whose deficiency limits the growth and development of plants. In this study, we investigated the possible role of GmWRKY46 in the phosphate (Pi) starvation stress tolerance of soybean. GmWRKY46 belonged to the group III subfamily of the WRKY transcription factor family, which was localized in the nucleus and had transcriptional activator activity. GmWRKY46 could be strongly induced by Pi starvation, especially in soybean roots. Overexpression of GmWRKY46 significantly enhanced tolerance to Pi starvation and lateral root development in transgenic Arabidopsis. RNA-seq analysis showed that overexpression of GmWRKY46 led to change in many genes related to energy metabolisms, stress responses, and plant hormone signal transduction in transgenic Arabidopsis. Among these differential expression genes, we found that overexpression of AtAED1 alone could enhance the tolerance of transgenic Arabidopsis to Pi starvation. Y1H and ChIP-qPCR analyses showed that GmWRKY46 could directly bind to the W-box motif of the AtAED1 promoter in vitro and in vivo. Furthermore, results from intact soybean composite plants with GmWRKY46 overexpression showed that GmWRKY46 was involved in hairy roots development and subsequently affected plant growth and Pi uptake. These results provide a basis for the molecular genetic breeding of soybean tolerant to Pi starvation.
Collapse
Affiliation(s)
- Cheng Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Liu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hui Ruan
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Mingming Zheng
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhijie Yu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Yang QQ, Yang F, Zhao YQ, Lu XJ, Liu CY, Zhang BW, Ge J, Fan JD. Genome-wide identification and functional characterization of WRKY transcription factors involved in the response to salt and heat stress in garlic ( Allium sativum L). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2045218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Qing-Qing Yang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Yong-Qiang Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Xin-Juan Lu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Can-Yu Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Bi-Wei Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Jie Ge
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Ji-De Fan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| |
Collapse
|
3
|
Calvo F, Yurtsever E. Solvation of coronene oligomers by para-H 2 molecules: the effects of size and shape. Phys Chem Chem Phys 2020; 22:12465-12475. [PMID: 32462154 DOI: 10.1039/d0cp01357a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stepwise solvation of various cationic coronene oligomers by para-hydrogen (p-H2) molecules was computationally investigated using a united-atom model for the p-H2 molecules and the Silvera-Goldman potential, together with a polarizable description for the interaction with the hydrocarbon molecules. A survey of the energy landscape for oligomers containing between 1 and 4 coronene molecules and possible different conformers was carried out using standard global optimization, the hydrocarbon complex being kept as rigid. The most stable structures provided the starting configuration of systematic path-integral molecular dynamics simulations at 2 K. The variations of the geometric and energetic properties of the solvation shell were determined with increasing number of para-hydrogen molecules. The relative stability of the solvation shell is generally found to be more robustly determined by the energy increment (or dissociation energy) than by geometrical indicators, especially when the oligomers have less ordered structures. In agreement with recent mass spectrometry experiments, the size at which the first solvation shell is complete is found to vary approximately linearly with the oligomer size when the coronene molecules stack together, with a slope that is related to the offset between two successive molecules.
Collapse
Affiliation(s)
- F Calvo
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
| | | |
Collapse
|
4
|
Bonfanti M, Achilli S, Martinazzo R. Sticking of atomic hydrogen on graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:283002. [PMID: 29845971 DOI: 10.1088/1361-648x/aac89f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent years have witnessed an ever growing interest in the interactions between hydrogen atoms and a graphene sheet. Largely motivated by the possibility of modulating the electric, optical and magnetic properties of graphene, a huge number of studies have appeared recently that added to and enlarged earlier investigations on graphite and other carbon materials. In this review we give a glimpse of the many facets of this adsorption process, as they emerged from these studies. The focus is on those issues that have been addressed in detail, under carefully controlled conditions, with an emphasis on the interplay between the adatom structures, their formation dynamics and the electric, magnetic and chemical properties of the carbon sheet.
Collapse
Affiliation(s)
- Matteo Bonfanti
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
5
|
Calvo F, Yurtsever E, Tekin A. Physisorption of H 2 on Fullerenes and the Solvation of C 60 by Hydrogen Clusters at Finite Temperature: A Theoretical Assessment. J Phys Chem A 2018; 122:2792-2800. [PMID: 29451795 DOI: 10.1021/acs.jpca.8b00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between hydrogen and carbonaceous nanostructures is of fundamental interest in various areas of physical chemistry. In this contribution we have revisited the physisorption of hydrogen molecules and H2 clusters on fullerenes, following a first-principles approach in which the interaction is quantitatively evaluated for the C20 system using high-level electronic structure methods. Relative to coupled cluster data at the level of single, double, and perturbative triple excitations taken as a benchmark, the results for rotationally averaged physisorbed H2 show a good performance of MP2 variants and symmetry-adapted perturbation theory, but significant deviations and basis set convergence issues are found for dispersion-corrected density functional theory. These electronic structure data are fitted to produce effective coarse-grained potentials for use in larger systems such as C60-H2. Using path-integral molecular dynamics, the potentials are also applied to parahydrogen clusters solvated around fullerenes, across the regime where the first solvation shell becomes complete and as a function of increasing temperature. For C60 our findings indicate a sensible dependence of the critical solvation size on the underlying potential. As the temperature is increased, a competition is found between the surface and radial expansions of the solvation shell, with one molecule popping away at intermediate temperatures but getting reinserted at even higher temperatures.
Collapse
Affiliation(s)
- F Calvo
- LiPhy , Université Grenoble Alpes and CNRS UMR 5588 , 140 Avenue de la Physique , 38402 St Martin d'Hères , France
| | - E Yurtsever
- Koç University , Chemistry Department , Rumeli Feneri Yolu , 34450 Sariyer, Istanbul , Turkey
| | - A Tekin
- Informatics Institute , Istanbul Technical University , 34469 Maslak, Istanbul , Turkey
| |
Collapse
|
7
|
Pasquini M, Bonfanti M, Martinazzo R. Full quantum dynamical investigation of the Eley-Rideal reaction forming H 2 on a movable graphitic substrate at T = 0 K. Phys Chem Chem Phys 2018; 20:977-988. [PMID: 29231946 DOI: 10.1039/c7cp07080b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the Eley-Rideal abstraction reaction of hydrogen atoms on a movable graphitic surface is investigated for the first time in a numerically exact fully quantum setting. A system-bath strategy was applied where the two recombining H atoms and a substrate C atom form a relevant subsystem, while the rest of the lattice takes the form of an independent oscillator bath. High-dimensional wavepacket simulations were performed in the collision energy range 0.2-1.0 eV with the help of the multi-layer multi-configuration time-dependent Hartree method, focusing on the collinear reaction on a zero-temperature surface. Results show that the dynamics is close to a sudden limit in which the reaction is much faster than the substrate motion. Unpuckering of the surface is fast (some tens of fs) but starts only after the formation of H2 is completed, thereby determining a considerable substrate heating (∼0.8 eV per reactive event). Energy partitioning in the product molecule favors translational over vibrational energy, and H2 molecules are vibrationally hot (∼1.5 eV) though to a lesser extent than previously predicted.
Collapse
Affiliation(s)
- Marta Pasquini
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy.
| | | | | |
Collapse
|