1
|
Yang X, Lu K, Ma X, Liu Y, Wang H, Hu R, Li X, Lou S, Chen S, Dong H, Wang F, Wang Y, Zhang G, Li S, Yang S, Yang Y, Kuang C, Tan Z, Chen X, Qiu P, Zeng L, Xie P, Zhang Y. Observations and modeling of OH and HO 2 radicals in Chengdu, China in summer 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144829. [PMID: 33578154 DOI: 10.1016/j.scitotenv.2020.144829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This study reports on the first continuous measurements of ambient OH and HO2 radicals at a suburban site in Chengdu, Southwest China, which were collected during 2019 as part of a comprehensive field campaign 'CompreHensive field experiment to explOre the photochemical Ozone formation mechaniSm in summEr - 2019 (CHOOSE-2019)'. The mean concentrations (11:00-15:00) of the observed OH and HO2 radicals were 9.5 × 106 and 9.0 × 108 cm-3, respectively. To investigate the state-of-the-art chemical mechanism of radical, closure experiments were conducted with a box model, in which the RACM2 mechanism updated with the latest isoprene chemistry (RACM2-LIM1) was used. In the base run, OH radicals were underestimated by the model for the low-NO regime, which was likely due to the missing OH recycling. However, good agreement between the observed and modeled OH concentrations was achieved when an additional species X (equivalent to 0.25 ppb of NO mixing ratio) from one new OH regeneration cycle (RO2 + X → HO2, HO2 + X → OH) was added into the model. Additionally, in the base run, the model could reproduce the observed HO2 concentrations. Discrepancies in the observed and modeled HO2 concentrations were found in the sensitivity runs with HO2 heterogeneous uptake, indicating that the impact of the uptake may be less significant in Chengdu because of the relatively low aerosol concentrations. The ROx (= OH + HO2 + RO2) primary source was dominated by photolysis reactions, in which HONO, O3, and HCHO photolysis accounted for 34%, 19%, and 23% during the daytime, respectively. The efficiency of radical cycling was quantified by the radical chain length, which was determined by the NO to NO2 ratio successfully. The parameterization of the radical chain length may be very useful for the further determinations of radical recycling.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yanhui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China.
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Fengyang Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yihui Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Guoxian Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Shule Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Suding Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yiming Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Cailing Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Zhaofeng Tan
- International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Peipei Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Pinhua Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen, China.
| |
Collapse
|
2
|
Ward MKM, Rowley DM. Kinetics of the BrO + HO 2 reaction over the temperature range T = 246-314 K. Phys Chem Chem Phys 2017; 19:23345-23356. [PMID: 28825741 DOI: 10.1039/c7cp03854b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The kinetics of the reaction between gas phase BrO and HO2 radicals, BrO + HO2 → HOBr + O2 (1), have been studied over the atmospherically relevant temperature range T = 246-314 K and at ambient pressure, p = 760 ± 20 Torr, using laser flash photolysis coupled with ultraviolet absorption spectroscopy. The reaction was initiated by the generation of bromine monoxide radicals following laser photolytic generation of Br atoms from Br2/Cl2 containing mixtures and their reaction with ozone. Subsequently, the addition of methanol vapour to the reaction mixture, in the presence of excess oxygen, afforded the efficient simultaneous post-photolysis formation of HO2 radicals using well-defined chemistry. The decay of BrO radicals, in the presence and absence of HO2, was interrogated to determine the rate coefficients for the BrO + BrO and the BrO + HO2 reactions. A detailed sensitivity analysis was performed to ensure that the BrO + HO2 reaction was unequivocally monitored. The rate coefficient for reaction (1) is described by the Arrhenius expression: where statistical errors are 1σ. The negative temperature dependence of this reaction is in general accord with those reported by previous studies of this reaction. However, the present work reports greater absolute values for k1 than those of several previous studies. An assessment of previous laboratory studies of k1 is presented. This work confirms that reaction (1) plays a significant role in HOBr formation throughout the atmosphere following both anthropogenic, biogenic and volcanic emissions of brominated species. Reaction (1) therefore contributes to an efficient ozone depleting process in the atmosphere, and further confirms the significance of interactions between two different families of reactive atmospheric trace species.
Collapse
Affiliation(s)
- Michael K M Ward
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - David M Rowley
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|