1
|
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023; 25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate prediction of energy differences between alternative spin states of transition metal complexes is essential in computational (bio)inorganic chemistry-for example, in characterization of spin crossover materials and in the theoretical modeling of open-shell reaction mechanisms-but it remains one of the most compelling problems for quantum chemistry methods. A part of this challenge is to obtain reliable reference data for benchmark studies, as even the highest-level applicable methods are known to give divergent results. This Perspective discusses two possible approaches to method benchmarking for spin-state energetics: using either theoretically computed or experiment-derived reference data. With the focus on the latter approach, an extensive general review is provided for the available experimental data of spin-state energetics and their interpretations in the context of benchmark studies, targeting the possibility of back-correcting the vibrational effects and the influence of solvents or crystalline environments. With a growing amount of experience, these effects can be now not only qualitatively understood, but also quantitatively modeled, providing the way to derive nearly chemically accurate estimates of the electronic spin-state gaps to be used as benchmarks and advancing our understanding of the phenomena related to spin states in condensed phases.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Krakow, Poland.
| |
Collapse
|
2
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
3
|
Phung QM, Muchammad Y, Yanai T, Ghosh A. A DMRG/CASPT2 Investigation of Metallocorroles: Quantifying Ligand Noninnocence in Archetypal 3d and 4d Element Derivatives. JACS AU 2021; 1:2303-2314. [PMID: 34984418 PMCID: PMC8717376 DOI: 10.1021/jacsau.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 05/03/2023]
Abstract
Hybrid density functional theory (B3LYP) and density matrix renormalization group (DMRG) theory have been used to quantitatively compare the degree of ligand noninnocence (corrole radical character) in seven archetypal metallocorroles. The seven complexes, in decreasing order of corrole noninnocent character, are Mn[Cor]Cl > Fe[Cor]Cl > Fe[Cor](NO) > Mo[Cor]Cl2 > Ru[Cor](NO) ≈ Mn[Cor]Ph ≈ Fe[Cor]Ph ≈ 0, where [Cor] refers to the unsubstituted corrolato ligand. DMRG-based second-order perturbation theory calculations have also yielded detailed excited-state energetics data on the compounds, shedding light on periodic trends involving middle transition elements. Thus, whereas the ground state of Fe[Cor](NO) (S = 0) is best described as a locally S = 1/2 {FeNO}7 unit antiferromagnetically coupled to a corrole A' radical, the calculations confirm that Ru[Cor](NO) may be described as simply {RuNO}6-Cor3-, that is, having an innocent corrole macrocycle. Furthermore, whereas the ferromagnetically coupled S = 1{FeNO}7-Cor•2- state of Fe[Cor](NO) is only ∼17.5 kcal/mol higher than the S = 0 ground state, the analogous triplet state of Ru[Cor](NO) is higher by a far larger margin (37.4 kcal/mol) relative to the ground state. In the same vein, Mo[Cor]Cl2 exhibits an adiabatic doublet-quartet gap of 36.1 kcal/mol. The large energy gaps associated with metal-ligand spin coupling in Ru[Cor](NO) and Mo[Cor]Cl2 reflect the much greater covalent character of 4d-π interactions relative to analogous interactions involving 3d orbitals. As far as excited-state energetics is concerned, DMRG-CASPT2 calculations provide moderate validation for hybrid density functional theory (B3LYP) for qualitative purposes, but underscore the possibility of large errors (>10 kcal/mol) in interstate energy differences.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasin Muchammad
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Abhik Ghosh
- Department
of Chemistry, UiT-The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
4
|
Popp J, Riggenmann T, Schröder D, Ampßler T, Salvador P, Klüfers P. Bent and Linear {CoNO} 8 Entities: Structure and Bonding in a Prototypic Class of Nitrosyls. Inorg Chem 2021; 60:15980-15996. [PMID: 34612642 DOI: 10.1021/acs.inorgchem.1c00998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the isoelectronic ligands CN-, CO, and NO+, an oblique bonding to the metal is well-established for the nitrosyl ligand, with M-N-O angles down to ≈120°. In the last decades, the nitrosyl community got into the habit of addressing a bent-bonded nitrosyl ligand as 1NO-. Thus, because various redox forms of a nitrosyl ligand seem to exist, the ligand is considered to be "noninnocent" because of the obvious ambiguity of an oxidation state (OS) assignment of the ligand and metal. Among the bent-bonded species, the low-spin {CoNO}8 class is prototypic. From this class, some 20 new nitrosyl compounds, the X-ray structure determinations of which comply with strict quality criteria, were analyzed with respect to the OS issue. As a result, the effective OS method shows a low-spin d8 CoI-NO+ couple instead of a negative OS of the ligand at the BP86/def2-TZVP (+D3, +CPCM with infinite permittivity) level of theory. The same holds for some new members of the linear subclass of {CoNO}8 compounds. For all compounds, a largely invariable "real" charge of ≈ -0.3 e was obtained from population analyses. All of these electron-rich d8 species strive to manage Pauli repulsion between the metal electrons and the lone pair at the nitrosyl's nitrogen atom, with the bending of the CoNO unit as the most frequent escape.
Collapse
Affiliation(s)
- Jens Popp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Tobias Riggenmann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Daniel Schröder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Torsten Ampßler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi i Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Peter Klüfers
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
5
|
Broclawik E, Kozyra P, Mitoraj M, Radoń M, Rejmak P. Zeolites at the Molecular Level: What Can Be Learned from Molecular Modeling. Molecules 2021; 26:molecules26061511. [PMID: 33801999 PMCID: PMC8001918 DOI: 10.3390/molecules26061511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
This review puts the development of molecular modeling methods in the context of their applications to zeolitic active sites. We attempt to highlight the utmost necessity of close cooperation between theory and experiment, resulting both in advances in computational methods and in progress in experimental techniques.
Collapse
Affiliation(s)
- Ewa Broclawik
- Jerzy Haber Institute of Catalysis PAS, Niezapominajek 8, 30-239 Krakow, Poland
- Correspondence:
| | - Paweł Kozyra
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.K.); (M.M.); (M.R.)
| | - Mariusz Mitoraj
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.K.); (M.M.); (M.R.)
| | - Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.K.); (M.M.); (M.R.)
| | - Paweł Rejmak
- Laboratory of X-ray and Electron Microscopy Research, Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;
| |
Collapse
|
6
|
Structure and mechanistic relevance of Ni2+–NO adduct in model HC SCR reaction over NiZSM-5 catalyst – Insights from standard and correlation EPR and IR spectroscopic studies corroborated by molecular modeling. J Catal 2021. [DOI: 10.1016/j.jcat.2020.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Drabik G, Szklarzewicz J, Radoń M. Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data? Phys Chem Chem Phys 2021; 23:151-172. [PMID: 33313617 DOI: 10.1039/d0cp04727a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We benchmark the accuracy of quantum-chemical methods, including wave function theory methods [coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation-theory (CASPT2, NEVPT2) and internally contracted multireference configuration interaction (MRCI)] and 30 density functional theory (DFT) approximations, in reproducing the spin-state splittings of metallocenes. The reference values of the electronic energy differences are derived from the experimental spin-crossover enthalpy for manganocene and the spectral data of singlet-triplet transitions for ruthenocene, ferrocene, and cobaltocenium. For ferrocene and cobaltocenium we revise the previous experimental interpretations regarding the lowest triplet energy; our argument is based on the comparison with the lowest singlet excitation energy and herein reported, carefully determined absorption spectrum of ferrocene. When deriving vertical energies from the experimental band maxima, we go beyond the routine vertical energy approximation by introducing vibronic corrections based on simulated vibrational envelopes. The benchmarking result confirms the high accuracy of the CCSD(T) method (in particular, for UCCSD(T) based on Hartree-Fock orbitals we find for our dataset: maximum error 0.12 eV, weighted mean absolute error 0.07 eV, weighted mean signed error 0.01 eV). The high accuracy of the single-reference method is corroborated by the analysis of a multiconfigurational character of the complete active space wave function for the triplet state of ferrocene. On the DFT side, our results confirm the non-universality problem with approximate functionals. The present study is an important step toward establishing an extensive and representative benchmark set of experiment-derived spin-state energetics for transition metal complexes.
Collapse
Affiliation(s)
- Gabriela Drabik
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
8
|
Said S, Aman D, Riad M, Mikhail S. MoZn /AlPO4-5 zeolite: Preparation, structural characterization and catalytic dehydration of ethanol. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Radoń M. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Phys Chem Chem Phys 2019; 21:4854-4870. [PMID: 30778468 DOI: 10.1039/c9cp00105k] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accuracy of relative spin-state energetics predicted by selected quantum chemistry methods: coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation theory (CASPT2, NEVPT2), multireference configuration interaction at the MRCISD+Q level, and a number of DFT methods, is quantitatively evaluated by comparison with the experimental data of four octahedral iron complexes. The available experimental data, either spin-forbidden transition energies or spin crossover enthalpies, are corrected for relevant environmental effects in order to derive the quantitative benchmark set of iron spin-state energetics. Comparison of theory predictions with the resulting reference data: (1) validates the high accuracy of the CCSD(T) method, particularly when based on Kohn-Sham orbitals, giving the maximum error below 2 kcal mol-1 and the mean absolute error (MAE) below 1 kcal mol-1; (2) corroborates the tendency of CASPT2 to systematically overstabilize higher-spin states by up to 5.5 kcal mol-1; (3) confirms that the latter problem is partly remedied by the recently proposed CASPT2/CC approach [Phung et al., J. Chem. Theory Comput., 2018, 14, 2446-2455]; (4) demonstrates that NEVPT2 performs worse than CASPT2, by giving errors up to 7 kcal mol-1; (5) shows that the accuracy of MRCISD+Q spin-state energetics strongly depends on the size-consistency correction: the Davidson-Silver and Pople corrections perform best (MAE < 3 kcal mol-1), whereas the standard Davidson correction is not recommended (MAE of 7 kcal mol-1). Only a few DFT methods (including the best performing ones identified in this study: B2PLYP-D3 and OPBE) are able to provide a balanced description of the spin-state energetics for all four studied iron complexes simultaneously, corroborating the non-universality problem of approximate density functionals.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University in Krakow, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
10
|
Radoń M, Drabik G. Spin States and Other Ligand-Field States of Aqua Complexes Revisited with Multireference ab Initio Calculations Including Solvation Effects. J Chem Theory Comput 2018; 14:4010-4027. [PMID: 29944837 DOI: 10.1021/acs.jctc.8b00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-level multireference (CASPT2, NEVPT2) calculations are reported for transition metal aqua complexes with electronic configurations from (3d)1 to (3d)8. We focus on the experimentally evidenced excitation energies to their various ligand-field states, including different spin states. By employing models accounting for both explicit and implicit solvation, we find that solvation effect may contribute up to 0.5 eV to the excitation energies depending on the charge of ion and character of the electronic transition. We further demonstrate that with an adequate choice of the active space and the energetics extrapolated to the complete basis set limit, the presently computed excitation energies are in a good agreement with the experimental data. This allows us to conclusively resolve significant discrepancies reported in earlier theory works [e.g., J. Phys. Chem. C 2014 , 118 , 29196 - 29208 ]. For the benchmark set of 19 spin-forbidden and 24 spin-allowed transitions (for which experimental data are unambiguous), we find the mean absolute error of 0.15 or 0.13 eV and the maximum error of 0.56 or 0.42 eV for CASPT2 or NEVPT2 calculations, respectively. For the particularly challenging sextet-quartet gap for [Fe(H2O)6]3+, we support our interpretation by additional calculations with multireference configuration interaction (MRCI) and coupled cluster theory up to the CCSDT(Q) level. By underlining a rather subtle interplay between the solvation and correlation effects, the findings of this Article are relevant not only for modeling and interpretation of optical spectra of transition metal complexes but also in further benchmarking of theoretical methods for the challenging problem of spin-state energetics.
Collapse
Affiliation(s)
- Mariusz Radoń
- Department of Inorganic Chemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , Krakow 30-387 , Poland
| | - Gabriela Drabik
- Department of Inorganic Chemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , Krakow 30-387 , Poland
| |
Collapse
|
11
|
Broclawik E, Góra-Marek K, Radoń M, Bučko T, Stępniewski A. The dependence on ammonia pretreatment of N-O activation by Co(II) sites in zeolites: a DFT and ab initio molecular dynamics study. J Mol Model 2017; 23:160. [PMID: 28409286 PMCID: PMC5393292 DOI: 10.1007/s00894-017-3322-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/17/2017] [Indexed: 11/30/2022]
Abstract
This work is focused on the donor properties of cobalt-exchanged cationic sites in zeolites. It is based on cluster and periodic density functional theory modeling for relevant {[Co(II)(NH3)n]-NO} adducts, where Co(II) means a cobalt cation embedded either in a periodic model of chabasite (CHA) zeolite or in model clusters. NO stretching frequencies were derived from MD trajectories and compared to harmonic values from cluster calculations. By relating calculated NO frequencies to experimental FTIR spectra, it was shown that the forms of {Co(II)-NO} adducts comprising three or four ammonia co-ligands dominate the spectrum taken in ammonia-saturation conditions while forms with two NH3 ligands prevail under intermediate ammonia saturation. Finally, this work confirms the critical dependence of Co(II) activation ability towards NO upon the center donor properties, reinforced by ligation of strong donor ammonia ligands. However, strongly bound ligands appear also to compete with interaction of the center with the electron-rich framework, and a balance must be observed to maintain optimal activation ability. Graphical abstract A snapshot from MD trajectory showing a fragment of periodic framework with twoCo(II)-NO centers, bound to one framework oxygen and strongly coordinating three ammonia ligands with four others forming the second coordination sphere.
Collapse
Affiliation(s)
- E Broclawik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland.
| | - K Góra-Marek
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - M Radoń
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - T Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, SK-84215, Bratislava, Slovakia
| | - A Stępniewski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| |
Collapse
|