1
|
Hara T, Habe M, Nakanishi H, Fujimura T, Sasai R, Moriyoshi C, Kawaguchi S, Ichikuni N, Shimazu S. Specific lift-up behaviour of acetate-intercalated layered yttrium hydroxide interlayer in water: application for heterogeneous Brønsted base catalysts toward Knoevenagel reactions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The basal (00l) plane of acetate-intercalated layered yttrium hydroxide (CH3COO−/Y-LRH), synthesised by an anion exchange using Cl−/Y-LRH as a parent material, increased in water, and the lifted-up layered structure was generated immediately.
Collapse
Affiliation(s)
- Takayoshi Hara
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | - Maoko Habe
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | - Hikaru Nakanishi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | - Takuya Fujimura
- Department of Materials Chemistry, Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Ryo Sasai
- Department of Materials Chemistry, Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Chikako Moriyoshi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| | - Shogo Shimazu
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
2
|
Vasilchenko DB, Berdyugin SN, Korenev SV, O'Kennedy S, Gerber WJ. Spectroscopic and DFT Study of Rh III Chloro Complex Transformation in Alkaline Solutions. Inorg Chem 2017; 56:10724-10734. [PMID: 28825805 DOI: 10.1021/acs.inorgchem.7b01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrolysis of [RhCl6]3- in NaOH-water solutions was studied by spectrophotometric methods. The reaction proceeds via successive substitution of chloride with hydroxide to quantitatively form [Rh(OH)6]3-. Ligand substitution kinetics was studied in an aqueous 0.434-1.085 M NaOH matrix in the temperature range 5.5-15.3 °C. Transformation of [RhCl6]3- into [RhCl5(OH)]3- was found to be the rate-determining step with activation parameters of ΔH† = 105 ± 4 kJ mol-1 and ΔS†= 59 ± 10 J K-1 mol-1. The coordinated hydroxo ligand(s) induces rapid ligand substitution to form [Rh(OH)6]3-. By simulating ligand substitution as a dissociative mechanism, using density functional theory (DFT), we can now explain the relatively fast and slow kinetics of chloride substitution in basic and acidic matrices, respectively. Moreover, the DFT calculated activation energies corroborated experimental data that the kinetic stereochemical sequence of [RhCl6]3- hydrolysis in an acidic solution proceeds as [RhCl6]3- → [RhCl5(H2O)]2- → cis-[RhCl4(H2O)2]-. However, DFT calculations predict in a basic solution the trans route of substitution [RhCl6]3- → [RhCl5(OH)]3- → trans-[RhCl4(OH)2]3- is kinetically favored.
Collapse
Affiliation(s)
- Danila B Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science , 630090 Novosibirsk, Russian Federation.,Novosibirsk State University , 630090 Novosibirsk, Russian Federation
| | - Semen N Berdyugin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science , 630090 Novosibirsk, Russian Federation
| | - Sergey V Korenev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science , 630090 Novosibirsk, Russian Federation.,Novosibirsk State University , 630090 Novosibirsk, Russian Federation
| | - Sean O'Kennedy
- Stellenbosch University , Department of Chemistry and Polymer Science, Stellenbosch 7602, Western Cape, South Africa
| | - Wilhelmus J Gerber
- Stellenbosch University , Department of Chemistry and Polymer Science, Stellenbosch 7602, Western Cape, South Africa
| |
Collapse
|