1
|
Huang D, An Q, Wang L, Li T, Liu M, Wu Y. Multi-active sites in situ formed on Schiff-base Pd(II)/Cu(II) self-assembly monolayer supported on graphene oxide: A simple protocol to enhance the catalytic activity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Fabrication and Catalytic Performance of A New Diaminopyridine Pd(II) Monolayer Supported on Graphene Oxide for Catalyzing Suzuki Coupling Reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Zhu S, Li Z, Ren R, Zhao W, Li T, Liu M, Wu Y. Pd/Cu
2
O/CuO as Active Sites on the Cyclometalated Pd(II)/Cu(II) Nanosheet: Active Centre Formation, Synergistic and Catalytic Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuiqing Zhu
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Zihan Li
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Ruirui Ren
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Wuduo Zhao
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology Zhengzhou University, Kexuedadao 100 Zhengzhou 450001, Henan Province P.R. China
- Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2 Beijing 100190 P. R China
| | - Yangjie Wu
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| |
Collapse
|
4
|
Li Z, Song E, Ren R, Zhao W, Li T, Liu M, Wu Y. Pd-Pd/PdO as active sites on intercalated graphene oxide modified by diaminobenzene: fabrication, catalysis properties, synergistic effects, and catalytic mechanism. RSC Adv 2022; 12:8600-8610. [PMID: 35424835 PMCID: PMC8984910 DOI: 10.1039/d2ra00658h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Pd-Pd/PdO nanoclusters well dispersed on intercalated graphene oxide (GO) (denoted as GO@PPD-Pd) were prepared and characterized. GO@PPD-Pd exhibited high catalytic activity (a TOF value of 60 705 h-1) during the Suzuki coupling reaction, and it could be reused at least 6 times. The real active centre was Pd(200)-Pd(200)/PdO(110, 102). A change in the Pd facets on the surface of PdO was a key factor leading to deactivation, and the aggregation and loss of active centres was also another important reason. The catalytic mechanism involved heterogeneous catalysis, showing that the catalytic processes occurred at the interface, including substrate adsorption, intermediate formation, and product desorption. The real active centres showed enhanced negative charge due to the transfer of electrons from the carrier and ligands, which could effectively promote the oxidative addition reaction, and Pd(200) and the heteroconjugated Pd/PdO interface generated in situ also participated in the coupling process, synergistically boosting activity. Developed GO@PPD-Pd was a viable heterogeneous catalyst that may have practical applications owing to its easy synthesis and stability, and this synergistic approach can be utilized to develop other transition-metal catalysts.
Collapse
Affiliation(s)
- Zihan Li
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Erran Song
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Ruirui Ren
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Wuduo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 Henan Province P. R. China
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| |
Collapse
|
5
|
Sandwich structured aryl-diimine Pd (II)/Co (II) monolayer—Fabrication, catalytic performance, synergistic effect and mechanism investigation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Ren R, Huang P, Zhao W, Li T, Liu M, Wu Y. A New ternary organometallic Pd(ii)/Fe(iii)/Ru(iii) self-assembly monolayer: the essential ensemble synergistic for improving catalytic activity. RSC Adv 2021; 11:1250-1260. [PMID: 35424095 PMCID: PMC8693531 DOI: 10.1039/d0ra09347e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
The synergistic catalytic effect in a hetero-trimetallic catalytic monolayer is one of the intriguing topics because the additive effects of the second or third component play an important role in improving the activity. In this paper, a new Schiff-base organometallic nanosheet containing Pd/Fe/Ru immobilized on graphene oxide (GO@H-Pd/Fe/Ru) was prepared and characterized. The catalytic performance of GO@H-Pd/Fe/Ru and synergistic effect were systematically investigated. GO@H-Pd/Fe/Ru was found to be an efficient catalyst with higher turnover frequency (TOF) (26 892 h-1) and stability with recyclability of at least 10 times in the Suzuki-Miyaura coupling reaction. The deactivation mechanism was caused by the aggregation of the active species, loss of the active species, the changes of the organometallic complex, and active sites covered by adsorbed elements during the catalytic process. GO@H-Pd/Fe/Ru was a heterogeneous catalyst, as confirmed by kinetic studies with in situ FT-IR, thermal filtration tests and poisoning tests. The real active center containing Pd, Ru and Fe arranged as Fe(iii)-Ru(iii)-Pd(ii)-Fe(iii) was proposed. Although Ru(iii) and Fe(iii) were shown to be less active or inactive, the addition of Fe and Ru could effectively improve the entire activity by their ''indirect'' function, in which Fe or Ru made Pd more negative and more stable. The ensemble synergistic effect between metals, the ligand and support was described as a process in which the electron was transferred from GOvia ligand to Ru, and then to Pd or from Fe to Pd to make Pd more negative, promoting the oxidation addition with aryl halide. Also, the vicinity of Ru around Pd as the promoter adsorbed aryl boronic acid, which facilitates its synergism to react with the oxidation intermediate to the trans-metallic intermediate.
Collapse
Affiliation(s)
- Ruirui Ren
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China +86-371-67766667
| | - Pingping Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China +86-371-67766667
| | - Wuduo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China +86-371-67766667
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China +86-371-67766667
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 Henan Province P. R. China
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China +86-371-67766667
| |
Collapse
|
7
|
Immobilized Pd on Eggshell Membrane: A powerful and recyclable catalyst for Suzuki and Heck cross-coupling reactions in water. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Ren R, Bi S, Wang L, Zhao W, Wei D, Li T, Xu W, Liu M, Wu Y. Terpyridine-based Pd(ii)/Ni(ii) organometallic framework nano-sheets supported on graphene oxide-investigating the fabrication, tuning of catalytic properties and synergetic effects. RSC Adv 2020; 10:23080-23090. [PMID: 35520341 PMCID: PMC9054763 DOI: 10.1039/d0ra02195d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/24/2022] Open
Abstract
Tailoring the structures of catalysts and the arrangement of organic bimetallic catalysts are essential in both fundamental research and applications. However, they still impose enormous challenges such as size and active species distribution, ordered uniformity, and controllable composition, which are critical in determining their specific activities and efficiency. Herein, a novel terpyridine-based hetero-bimetallic Ni/Pd nanosheet supported on graphene oxide (denoted as GO@Tpy-Ni/Pd) was fabricated, which exhibited higher catalytic activity, substrate applicability and recyclability for the Suzuki coupling reaction under mild conditions. The catalytic mechanism was heterogeneous catalysis at the interface and the synergetic effect between Pd and Ni resulted in a little Ni(0)/Pd(0) cluster including Pd(ii)/Ni(ii) as a whole being formed through electron transfer on the catalytic surface. This phenomenon could be interpreted as the nanoscale clusters of Ni/Pd being the real active centre stabilized by the ligand and GO and the synergetic effect. The absorption and desorption of different substrates and products on Ni/Pd clusters, as calculated by DFT, was proved to be another key factor. The synergistic effect between Ni and Pd atom was the crucial factor for enhancing catalytic activity.![]()
Collapse
Affiliation(s)
- Ruirui Ren
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Sa Bi
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Linhong Wang
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wenjian Xu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 P. R. China.,Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Yangjie Wu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
9
|
Li L, Xue X, Sun Y, Zhao W, Li T, Liu M, Wu Y. Self-assembly Palladacycle Thiophene Imine Monolayer—Investigating on Catalytic Activity and Mechanism for Coupling Reaction. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9087-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Song E, Wang J, Li T, Zhao W, Liu M, Wu Y. Novel ordered cyclopalladated aryl imine monolayers—Structure Designing for Enhancing Catalytic Performance. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Binuclear Palladium Complex Immobilized on Mesoporous SBA-16: Efficient Heterogeneous Catalyst for the Carbonylative Suzuki Coupling Reaction of Aryl Iodides and Arylboronic Acids Using Cr(CO)6 as Carbonyl Source. Catal Letters 2020. [DOI: 10.1007/s10562-019-03087-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Maji A, Singh A, Mohanty A, Maji PK, Ghosh K. Ferrocenyl palladacycles derived from unsymmetrical pincer-type ligands: evidence of Pd(0) nanoparticle generation during the Suzuki-Miyaura reaction and applications in the direct arylation of thiazoles and isoxazoles. Dalton Trans 2019; 48:17083-17096. [PMID: 31701974 DOI: 10.1039/c9dt03465j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new family of ferrocenyl-palladacycle complexes Pd(L1)Cl (Pd1) and Pd(L2)Cl (Pd2) were synthesized and characterized by UV-visible, IR, ESI-MS, and NMR spectral studies. The molecular structures of Pd1 and Pd2 were determined by X-ray crystallographic studies. Palladacycle catalyzed Suzuki-Miyaura cross-coupling reactions were investigated utilizing the derivatives of phenylboronic acids and substituted chlorobenzenes. Mechanistic investigation authenticated the generation of Pd(0) nanoparticles during the catalytic cycle and the nanoparticles were characterized by XPS, SEM and TEM analysis. Direct C-H arylation of thiazole and isoxazole derivatives employing these ferrocenyl-palladacycle complexes was examined. The reaction model for the arylation reaction implicating the in situ generation of Pd(0) nanoparticles was proposed.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Anshu Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Aurobinda Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, UP 247001, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
13
|
Controlled distribution of active centre to enhance catalytic activity of ordered Pd/Co catalytic nano-monolayer. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Huang P, Song E, Sun Y, Li T, Wei D, Liu M, Wu Y. Schiff-based Pd(II)/Fe(III) bimetallic self-assembly monolayer---preparation, structure, catalytic dynamic and synergistic. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Huang P, Xue Z, Li T, Liu Z, Wei D, Liu M, Wu Y. Investigation on Electron Distribution and Synergetic to Enhance Catalytic Activity in Bimetallic Ni(II)/Pd(II) Molecular Monolayer. ChemCatChem 2018. [DOI: 10.1002/cctc.201801350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pingping Huang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Ziqian Xue
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Institute of Chemistry Beijing National Laboratory for Molecular Science Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China
| |
Collapse
|
16
|
Hwang HJ, Choi I, Kim YJ, Kim YK, Yeo WS. Immobilization of phenol-containing molecules on self-assembled monolayers on gold via surface chemistry. Colloids Surf B Biointerfaces 2018; 173:164-170. [PMID: 30292024 DOI: 10.1016/j.colsurfb.2018.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/28/2022]
Abstract
Various phenol-containing molecules such as flavonoids have a wide range of biological effects including anticancer, antimicrobial, and anti-inflammatory properties, and, therefore, they have become subjects of active research for various medicinal and biological applications. To construct applicable materials incorporated with phenol-containing molecules, strategies for immobilization of phenol-containing molecules on solid substrates are required. Although several immobilization methods have been devised and reported, mostly harnessing phenol functionality, however, development of a general immobilization method has been hampered due to its complicated chemical reactions and low reaction yields on surfaces. Furthermore, the use of phenol as a reaction center may compromise the biological activity of phenol-containing molecules. Here, we describe a simple, fast, and reliable method for the surface immobilization of phenol-containing molecules by introducing chemical functional groups, carboxylic acid, thiol, and azide, while maintaining phenol functionality by way of the Mannich-type condensation reaction. We examined the chemical functionalization of naphthol, tyrosine, and flavanone and their immobilization to the self-assembled monolayers on gold via various surface chemistries: the carbodiimide coupling reaction, Michael addition, and the 'click' reaction. We strongly believe our method can be a general and practical platform for immobilization of various phenol-containing molecules on surfaces of various materials.
Collapse
Affiliation(s)
- Hye-Jeong Hwang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Inseong Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Young-Jin Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju-gun, Jeollabuk-do, 565-905, Republic of Korea
| | - Young-Kwan Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju-gun, Jeollabuk-do, 565-905, Republic of Korea.
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
17
|
Wang L, Huang P, Yang J, Li T, Mao L, Liu M, Wu Y. Fabrication and catalytic properties of ordered cyclopalladated diimine monolayer : investigation on catalytic mechanism. RSC Adv 2018; 8:31860-31867. [PMID: 35547506 PMCID: PMC9085729 DOI: 10.1039/c8ra06365f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 01/03/2023] Open
Abstract
"Channel-like" self-assembled monolayers having aliphatic and aromatic diimines (denoted as Si@1DIS, Si@2DIS and Si@3DIS) immobilized on substrates and their palladacycle monolayers (Si@1DIS-Pd, Si@2DIS-Pd and Si@3DIS-Pd) were prepared and characterized. Their catalytic performances were investigated using the Suzuki coupling reaction as a model. Si@3DIS-Pd showed the highest catalytic activity in water without ligands, and better recyclability than that of Si@2DIS-Pd and Si@1DIS-Pd. The reason was the carbon in the aliphatic diimine of Si@2DIS-Pd and Si@1DIS-Pd was easily hydrolyzed because of the active hydrogen of α-C, resulting in poor recyclability. Control of the amount of catalyst could be achieved by modulating the diameter of the channel-like structure, which also affected the catalytic activity. The catalytic process and mechanism were investigated systematically and proposed based on the experimental results obtained by the water contact angle, ultraviolet spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and atomic force spectroscopy. Changes in the morphology of monolayer surfaces during the catalytic process with or without stirring presented a clear process from order to disorder, and indicated that the reaction was a heterogeneous catalytic process occurring on the surface of the catalyst monolayer.
Collapse
Affiliation(s)
- Linhong Wang
- College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry of Henan Province, The Key Lab of Nano-information Materials of Zhengzhou Zhengzhou 450001 P. R. China +86-371-67766667
| | - Pingping Huang
- College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry of Henan Province, The Key Lab of Nano-information Materials of Zhengzhou Zhengzhou 450001 P. R. China +86-371-67766667
| | - Jun Yang
- College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry of Henan Province, The Key Lab of Nano-information Materials of Zhengzhou Zhengzhou 450001 P. R. China +86-371-67766667
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry of Henan Province, The Key Lab of Nano-information Materials of Zhengzhou Zhengzhou 450001 P. R. China +86-371-67766667
| | - Luyuan Mao
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry of Henan Province, The Key Lab of Nano-information Materials of Zhengzhou Zhengzhou 450001 P. R. China +86-371-67766667
| |
Collapse
|
18
|
Gu X, Bi S, Guo L, Zhao Y, Li T, Liu M, Chen P, Wu Y. Facile Fabrication of Ordered Component-Tunable Heterobimetallic Self-Assembly Nanosheet for Catalyzing "Click" Reaction. ACS OMEGA 2017; 2:5415-5433. [PMID: 31457810 PMCID: PMC6644525 DOI: 10.1021/acsomega.7b00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 06/10/2023]
Abstract
How to maximize the number of desirable active sites on the surface of the catalyst and minimize the number of sites promoting undesirable side reactions is currently an important research topic. In this study, a new way based on the synergism to achieve the successful fabrication of an ordered heterobimetallic self-assembled monolayer (denoted as BMSAM) with a controlled composition and an excellent orientation of metals in the monolayer was developed. BMSAM consisting of phenanthroline and Schiff-base groups was prepared, and its novel heterobimetallic (Cu and Pd) self-assembled monolayer anchored in silicon (denoted as Si-Fmp-Cu-Pd BMSAM) with a controlled composition and a fixed position was fabricated and characterized by UV, cyclic voltammetry, Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and water-drop contact angle (WDCA) analyses. The effects of Si-Fmp-Cu-Pd BMSAM on its catalytic properties were also systematically investigated using "click" reaction as a template by WDCA, XPS, SEM, XRD, ICP-AES and in situ Fourier transform infrared analyses in a heterogeneous system. The results showed that the excellent catalytic characteristic could be attributed to the partial (ordered or proper distance) isolation of active sites displaying high densities of specific atomic ensembles. The catalytic reaction mechanism of the click reaction interpreted that the catalytic process mainly occurred on the surface of the monolayer, internal active site (Pd) and rationalized that the Cu(I) species and Pd(0) reduced from the Cu(II) and Pd(II) catalyst were active species, which had a proper distance between two different metals. The cuprate-triazole intermediate and the palladium intermediate, whose production is the key step, should lie in a proper position between the copper and active palladium sites, with which the reaction rate of transmetalation would be improved to increase the amount of the undesired Sonogashira coupling product.
Collapse
Affiliation(s)
- Xiang Gu
- College
of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology
and Organic Chemistry of Henan Province, and The Key Lab of Nano-information
Materials of Zhengzhou, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, P. R.
China
| | - Sa Bi
- College
of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology
and Organic Chemistry of Henan Province, and The Key Lab of Nano-information
Materials of Zhengzhou, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, P. R.
China
| | - Linna Guo
- College
of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology
and Organic Chemistry of Henan Province, and The Key Lab of Nano-information
Materials of Zhengzhou, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, P. R.
China
| | - Yaqing Zhao
- College
of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology
and Organic Chemistry of Henan Province, and The Key Lab of Nano-information
Materials of Zhengzhou, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, P. R.
China
| | - Tiesheng Li
- College
of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology
and Organic Chemistry of Henan Province, and The Key Lab of Nano-information
Materials of Zhengzhou, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, P. R.
China
| | - Minghua Liu
- Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, P. R. China
| | - Penglei Chen
- Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, P. R. China
| | - Yangjie Wu
- College
of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology
and Organic Chemistry of Henan Province, and The Key Lab of Nano-information
Materials of Zhengzhou, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, P. R.
China
| |
Collapse
|
19
|
Graphene Oxide-Supported Oxime Palladacycles as Efficient Catalysts for the Suzuki–Miyaura Cross-Coupling Reaction of Aryl Bromides at Room Temperature under Aqueous Conditions. Catalysts 2017. [DOI: 10.3390/catal7030094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Xue Z, Huang P, Li T, Qin P, Xiao D, Liu M, Chen P, Wu Y. A novel "tunnel-like" cyclopalladated arylimine catalyst immobilized on graphene oxide nano-sheet. NANOSCALE 2017; 9:781-791. [PMID: 27982152 DOI: 10.1039/c6nr07521e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel "tunnel-like" cyclopalladated arylimine was prepared and immobilized on graphene oxide nano-sheet to form a hybrid catalytic material (denoted as F-GO-Pd) by self-assembly. The F-GO-Pd catalyst was characterized by XRD, FTIR, Raman, XPS, SEM, and TEM. This novel hybrid catalytic material was proven to be an efficient catalyst for the Suzuki-Miyaura coupling reaction of aryl halides (I, Br, Cl) with arylboronic acids in aqueous media under mild conditions with a very low amount of catalyst (0.01 mol%) and a high turnover frequency (TOF) (>20 000 h-1). In particular, high yields also could be obtained at room temperature with prolonged time. F-GO-Pd also showed good stability and recyclability seven times with a superior catalytic activity. The heterogeneous catalytic mechanism was investigated with kinetic studies, hot filtration tests, catalyst poisoning tests, and in situ FTIR spectroscopy with a ReactIR and the deactivation mechanism of the catalysts was proposed through analysis of its chemical stability by TEM, SEM, Raman, and XRD, indicating that a heterogeneous catalytic process occurred on the surface and the changes of the catalytic activity during the recycling were related to the micro-environment of the catalyst surface.
Collapse
Affiliation(s)
- Ziqian Xue
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China.
| | - Pingping Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China.
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China.
| | - Pengxiao Qin
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China.
| | - Dan Xiao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R China
| | - Penglei Chen
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China.
| |
Collapse
|
21
|
Highly ordered amphiphilic cyclopalladated arylimine self-assembly films for catalyzing Heck and Suzuki coupling reactions. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Liu H, Xue X, Li T, Wang J, Xu W, Liu M, Chen P, Wu Y. A simple, recyclable, and self-assembled palladium(ii)–alkyl Schiff base complex for Suzuki coupling reaction: chain length dependence and heterogeneous catalysis. RSC Adv 2016. [DOI: 10.1039/c6ra14864f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple, recyclable, and self-assembled Pd(ii)–alkyl Schiff base complex for Suzuki coupling reaction: chain length dependence and heterogeneous catalysis.
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Xiaoxia Xue
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Jiong Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Wenjian Xu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R China
| | - Penglei Chen
- Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| |
Collapse
|