1
|
Medvedev AG, Egorov PA, Mikhaylov AA, Belyaev ES, Kirakosyan GA, Gorbunova YG, Filippov OA, Belkova NV, Shubina ES, Brekhovskikh MN, Kirsanova AA, Babak MV, Lev O, Prikhodchenko PV. Synergism of primary and secondary interactions in a crystalline hydrogen peroxide complex with tin. Nat Commun 2024; 15:5758. [PMID: 38982085 PMCID: PMC11233698 DOI: 10.1038/s41467-024-50164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Despite the significance of H2O2-metal adducts in catalysis, materials science and biotechnology, the nature of the interactions between H2O2 and metal cations remains elusive and debatable. This is primarily due to the extremely weak coordinating ability of H2O2, which poses challenges in characterizing and understanding the specific nature of these interactions. Herein, we present an approach to obtain H2O2-metal complexes that employs neat H2O2 as both solvent and ligand. SnCl4 effectively binds H2O2, forming a SnCl4(H2O2)2 complex, as confirmed by 119Sn and 17O NMR spectroscopy. Crystalline adducts, SnCl4(H2O2)2·H2O2·18-crown-6 and 2[SnCl4(H2O2)(H2O)]·18-crown-6, are isolated and characterized by X-ray diffraction, providing the complete characterization of the hydrogen bonding of H2O2 ligands including geometric parameters and energy values. DFT analysis reveals the synergy between a coordinative bond of H2O2 with metal cation and its hydrogen bonding with a second coordination sphere. This synergism of primary and secondary interactions might be a key to understanding H2O2 reactivity in biological systems.
Collapse
Affiliation(s)
- Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel A Egorov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey A Mikhaylov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeny S Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Gayane A Kirakosyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia G Gorbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Oleg A Filippov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia V Belkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria N Brekhovskikh
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna A Kirsanova
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Ovadia Lev
- Casali Center of Applied Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
2
|
Karbalaei S, Franke A, Oppelt J, Aziz T, Jordan A, Pokkuluri PR, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. A macrocyclic quinol-containing ligand enables high catalase activity even with a redox-inactive metal at the expense of the ability to mimic superoxide dismutase. Chem Sci 2023; 14:9910-9922. [PMID: 37736643 PMCID: PMC10510768 DOI: 10.1039/d3sc02398b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Previously, we found that linear quinol-containing ligands could allow manganese complexes to act as functional mimics of superoxide dismutase (SOD). The redox activity of the quinol enables even Zn(ii) complexes with these ligands to catalyze superoxide degradation. As we were investigating the abilities of manganese and iron complexes with 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane (H4qp4) to act as redox-responsive contrast agents for magnetic resonance imaging (MRI), we found evidence that they could also catalyze the dismutation of H2O2. Here, we investigate the antioxidant behavior of Mn(ii), Fe(ii), and Zn(ii) complexes with H4qp4. Although the H4qp4 complexes are relatively poor mimetics of SOD, with only the manganese complex displaying above-baseline catalysis, all three display extremely potent catalase activity. The ability of the Zn(ii) complex to catalyze the degradation of H2O2 demonstrates that the use of a redox-active ligand can enable redox-inactive metals to catalyze the decomposition of reactive oxygen species (ROS) besides superoxide. The results also demonstrate that the ligand framework can tune antioxidant activity towards specific ROS.
Collapse
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München 81377 München Germany
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München 81377 München Germany
| | - Tarfi Aziz
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Aubree Jordan
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - P Raj Pokkuluri
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University Auburn AL 36849 USA
| | | | | |
Collapse
|
3
|
Egorov PA, Grishanov DA, Medvedev AG, Churakov AV, Mikhaylov AA, Ottenbacher RV, Bryliakov KP, Babak MV, Lev O, Prikhodchenko PV. Organoantimony Dihydroperoxides: Synthesis, Crystal Structures, and Hydrogen Bonding Networks. Inorg Chem 2023. [PMID: 37311066 DOI: 10.1021/acs.inorgchem.3c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite growing interest in the potential applications of p-block hydroperoxo complexes, the chemistry of inorganic hydroperoxides remains largely unexplored. For instance, single-crystal structures of antimony hydroperoxo complexes have not been reported to date. Herein, we present the synthesis of six triaryl and trialkylantimony dihydroperoxides [Me3Sb(OOH)2, Me3Sb(OOH)2·H2O, Ph3Sb(OOH)2·0.75(C4H8O), Ph3Sb(OOH)2·2CH3OH, pTol3Sb(OOH)2, pTol3Sb(OOH)2·2(C4H8O)], obtained by the reaction of the corresponding dibromide antimony(V) complexes with an excess of highly concentrated hydrogen peroxide in the presence of ammonia. The obtained compounds were characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared and Raman spectroscopies, and thermal analysis. The crystal structures of all six compounds reveal hydrogen-bonded networks formed by hydroperoxo ligands. In addition to the previously reported double hydrogen bonding, new types of hydrogen-bonded motifs formed by hydroperoxo ligands were found, including infinite hydroperoxo chains. Solid-state density functional theory calculation of Me3Sb(OOH)2 revealed reasonably strong hydrogen bonding between OOH ligands with an energy of 35 kJ/mol. Additionally, the potential application of Ph3Sb(OOH)2·0.75(C4H8O) as a two-electron oxidant for the enantioselective epoxidation of olefins was investigated in comparison with Ph3SiOOH, Ph3PbOOH, t-BuOOH, and H2O2.
Collapse
Affiliation(s)
- Pavel A Egorov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Dmitry A Grishanov
- Casali Center of Applied Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Alexey A Mikhaylov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| | - Roman V Ottenbacher
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Konstantin P Bryliakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii pr. 47, Moscow 119991, Russian Federation
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ovadia Lev
- Casali Center of Applied Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Maor II, Heyte S, Elishav O, Mann-Lahav M, Thuriot-Roukos J, Paul S, Grader GS. Performance of Cu/ZnO Nanosheets on Electrospun Al 2O 3 Nanofibers in CO 2 Catalytic Hydrogenation to Methanol and Dimethyl Ether. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:635. [PMID: 36839003 PMCID: PMC9967565 DOI: 10.3390/nano13040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO2) and green hydrogen (H2) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to their low cost compared with their noble metal analogs. Nevertheless, improving the activity and selectivity of these Cu catalysts for these products is highly desirable. In the present study, a new architecture of Cu- and Cu/Zn-based catalysts supported on electrospun alumina nanofibers were synthesized. The catalysts were tested under various reaction conditions using high-throughput equipment to highlight the role of the hierarchical fibrous structure on the reaction activity and selectivity. The Cu or Cu/ZnO formed a unique structure of nanosheets, covering the alumina fiber surface. This exceptional morphology provides a large surface area, up to ~300 m2/g, accessible for reaction. Maximal production of methanol (~1106 gmethanolKgCu-1∙h-1) and DME (760 gDMEKgCu-1∙h-1) were obtained for catalysts containing 7% wt. Cu/Zn with a weight ratio of 2.3 Zn to Cu (at 300 °C, 50 bar). The promising results in CO2 hydrogenation to methanol and DME obtained here point out the significant advantage of nanofiber-based catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Itzhak I. Maor
- The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Svetlana Heyte
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université d’Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-59000 Lille, France
| | - Oren Elishav
- The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Meirav Mann-Lahav
- The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Joelle Thuriot-Roukos
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université d’Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-59000 Lille, France
| | - Sébastien Paul
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université d’Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-59000 Lille, France
| | - Gideon S. Grader
- The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephan Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
DFT study on aerial degradation of product radicals derived from the reaction of 1H–Heptafluorocyclopentene (cyc‐CF2CF2CF2CF = CH − ) with OH radical. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Propylene epoxidation over Au/TS-1 modified by ammonium salt: Enhancement of the attractiveness of gold precursors and supports. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Metal-ligand cooperation in the catalytic oxidation of (R)-carvone by Ga(NO3)3/H2O2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Structures and Bonding in Hexacarbonyl Diiron Polyenes: Cycloheptatriene and 1,3,5-Cyclooctatriene. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Structural preferences of (1,3,5-cyclooctatriene) hexacarbonyl diiron [(C8H10)Fe2(CO)6] and cycloheptatriene hexacarbonyl diiron [(C7H8)Fe2(CO)6] were explored using density functional theory (DFT) computations. DFT computations together with experimental results demonstrated that structure with the [η3, (η1, η2)] mode is the preferred structure in (C8H10)Fe2(CO)6, and the [η3,η3] mode is preferred in (C7H8)Fe2(CO)6. For (C8H10)Fe2(CO)6, the conversion between the structures with [η3, (η1, η2)] mode and the [η3, η3] mode is prevented by the relatively high activation barrier. (C8H10)Fe2(CO)6 is indicated as a fluxional molecule with a Gibbs free energy of activation of 8.5 kcal/mol for its ring flicking process, and an excellent linear correlation (R2 = 0.9909) for the DFT simulated 1H-NMR spectra was obtained. Results provided here will develop the understanding on the structures of other polyene analogs.
Collapse
|
9
|
Hu J, Yang B, Liu Z. Assessing the Activity Trend of Metal Nitride Catalysts for Ammonia Synthesis Based on Theory of Chemical Potential Kinetics. ChemistrySelect 2022. [DOI: 10.1002/slct.202201359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingya Hu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
| | - Bo Yang
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
| | - Zhi Liu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
| |
Collapse
|
10
|
Nickel (II), copper (II), and vanadyl (II) complexes with tridentate nicotinoyl hydrazone derivative functionalized as effective catalysts for epoxidation processes and as biological reagents. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Nesterova OV, Kuznetsov ML, Pombeiro AJL, Shul'pin GB, Nesterov DS. Homogeneous oxidation of C–H bonds with m-CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01991k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co/Fe system efficiently catalyses the oxidation of C–H bonds with m-CPBA. The nitric acid promoter hampers the m-CPBA homolysis, suppressing the free radical activity. Experimental and computational data evidence a concerted oxidation mechanism.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Georgiy B. Shul'pin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, Moscow 119991, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
12
|
Nesterova OV, Vassilyeva OY, Skelton BW, Bieńko A, Pombeiro AJL, Nesterov DS. A novel o-vanillin Fe(III) complex catalytically active in C-H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Trans 2021; 50:14782-14796. [PMID: 34595485 DOI: 10.1039/d1dt02366g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel complex [FeIIICl(L)2(H2O)] (1) was synthesized by interaction of iron(III) chloride with ethanol solution of o-vanillin (HL) and characterized by IR, UV/Vis spectroscopy, thermogravimetry and single crystal X-ray diffraction analysis. The molecules of 1 in the solid state are joined into supramolecular dimeric units, where a set of strong hydrogen bonds predefines the structure of the dimer according to the "key-lock" principle. From the Hirshfield surface analysis the contribution of π⋯π stacking to the overall stabilization of the dimer was found to be negligible. Broken symmetry DFT calculations suggested the presence of long-range antiferromagnetic interactions (J = -0.12 cm-1 for H = -JS1S2 formalism) occurring through the Fe-O⋯O-Fe pathway, as evidenced by the studies of the model dimers where the water molecules were substituted by acetonitrile and acetone ones. The benchmark studies using a set of literature examples and various DFT functionals revealed the hybrid-GGA B3LYP as the best one for prediction of FeIII⋯FeIII antiferromagnetic exchange couplings of small magnitude. Magnetic susceptibility measurements confirmed antiferromagnetic coupling between the metal atoms in 1 with a coupling constant of -0.35 cm-1. Catalytic studies demonstrated that 1 acts as an efficient catalyst in the oxidation of cyclohexane with hydrogen peroxide in the presence of nitric acid promoter and under mild conditions (yield up to 37% based on the substrate), while tert-butylhydroperoxide (TBHP) and m-chloroperoxybenzoic acid (m-CPBA) as oxidants exhibit less efficiency. Combined UV/TDDFT studies evidence the structural rearrangement of 1 in acetonitrile with the formation of [FeIIICl(L)2(CH3CN)] species. The TDDFT benchmark using nine common DFT functionals and two model compounds (o-vanillin and [FeIII(H2O)6]3+ ion) support the hybrid meta-GGA M06-2X functional as the one most correctly predicting the excited state structure for the Fe(III) complexes, under the conditions studied.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., Kyiv 01601, Ukraine.
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
13
|
Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G. Theoretical investigation of X12O12 (X = Be, Mg, and Ca) in sensing CH2N2: A DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Paularokiadoss F, Antony Sandosh T, Sekar A, Christopher Jeyakumar T. Theoretical studies of group 10 metal gallylene complexes [TM(CO)3(GaX)]. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Bernd MA, Dyckhoff F, Hofmann BJ, Böth AD, Schlagintweit JF, Oberkofler J, Reich RM, Kühn FE. Tuning the electronic properties of tetradentate iron-NHC complexes: Towards stable and selective epoxidation catalysts. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Shul'pina LS, Vinogradov MM, Kozlov YN, Nelyubina YV, Ikonnikov NS, Shul'pin GB. Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Du L, Wang Z, Wu J. Iodobenzene-catalyzed oxidative cleavage of olefins to carbonyl compounds. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zhou M, Springborg M. Theoretical study of the mechanism behind the site- and enantio-selectivity of C-H functionalization catalysed by chiral dirhodium catalyst. Phys Chem Chem Phys 2020; 22:9561-9572. [PMID: 32319983 DOI: 10.1039/d0cp00249f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-H functionalization is very important for the synthesis of pharmaceuticals and complex natural products. Rhodium carbenoids, obtained when a dirhodium(ii) catalyst containing a crown formed by chiral ligands reacts with diazo compounds with both an electron donating group and an electron withdrawing group, play an important part in controlling site- and enantio-selectivity for functionalization of non-activated C-H bonds. It has earlier been demonstrated that the tertiary C-H bond is more favored to be functionalized inside the crown of the dirhodium catalyst with S-configuration ligands compared with the secondary and primary C-H bonds although the latter possess weaker steric effects. We argue that the higher site- and enantio-selectivity for some types of C-H bond functionalization can be related to intermolecular hydrogen bonding, steric hindrance, and weak interactions when the dirhodium catalyst is interacting with the chiral ligands.
Collapse
Affiliation(s)
- Meijuan Zhou
- Physical and Theoretical Chemistry Department, University of Saarland, 66123 Saarbrücken, Germany.
| | - Michael Springborg
- Physical and Theoretical Chemistry Department, University of Saarland, 66123 Saarbrücken, Germany. and Materials Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Multidimensional CuII incorporated POMs [KI2CuII(en)2(β-Mo8O26)]n and [KI2CuII3(H2O)10(W12O40)0.2(H2O)]n: Syntheses, structures and catalytic epoxidation. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Heterometallic CoIIIZnII Schiff Base Catalyst for Mild Hydroxylation of C(sp3)–H Bonds of Unactivated Alkanes: Evidence for Dual Mechanism Controlled by the Promoter. Catalysts 2019. [DOI: 10.3390/catal9030209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The novel Schiff base complex [CoIIIZnIIL3Cl2]·CH3OH (1) was synthesized by interaction of zinc powder, cobalt(II) chloride and methanol solution of the pre-formed HL in air (HL is the product of condensation of o-vanillin and methylamine) and characterized by IR, UV-Vis and NMR spectroscopy, ESI-MS and single crystal X-ray diffraction analysis. In the heterometallic core of 1 the two metal centers are bridged by deprotonated phenoxy groups of the L− ligands with the cobalt-zinc separation of 3.123 Å. Catalytic investigations demonstrated a pronounced activity of 1 towards mild alkane oxidation with m-chloroperbenzoic acid (m-CPBA) as an oxidant and cis-1,2-dimethylcyclohexane (cis-1,2-DMCH) as the model substrate. The influence of the nature of different promoting agents of various acidities (from HOTf to pyridine) on the catalytic process was studied in detail and a pronounced activity of 1 in the presence of nitric acid promoter was found, also showing a high retention of stereoconfiguration of the substrate (>99% for cis-1,2-DMCH). The best achieved yield of tertiary cis-alcohol based on the oxidant was 61%, with a turnover number (TON) of 198 for nitric acid as promoter. The 18O-incorporations into the alcohols when the reactions were performed under 18O2 atmosphere using acetic and nitric acid promoters, suggest that the cis-1,2-DMCH hydroxylation proceeds by two distinct pathways, a non-stereoselective and a stereoselective one (with and without involvement of a long-lived free carbon radical, respectively). The former dominates in the case of acetic acid promoter and the latter is realized in the case of HNO3 promoter.
Collapse
|
22
|
Ma W, Qiao Y, Theyssen N, Zhou Q, Li D, Ding B, Wang D, Hou Z. A mononuclear tantalum catalyst with a peroxocarbonate ligand for olefin epoxidation in compressed CO2. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A mononuclear tantalum complex bonded to a peroxocarbonate ligand has been proved to be particularly important in the epoxidation reactions.
Collapse
Affiliation(s)
- Wenbao Ma
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yunxiang Qiao
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Nils Theyssen
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Qingqing Zhou
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Difan Li
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Bingjie Ding
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongqi Wang
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
23
|
Lu J, Ma X, Wang P, Feng J, Ma P, Niu J, Wang J. Synthesis, characterization and catalytic epoxidation properties of a new tellurotungstate(iv)-supported rhenium carbonyl derivative. Dalton Trans 2019; 48:628-634. [DOI: 10.1039/c8dt04195d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a new tellurotungstate(iv)-supported rhenium carbonyl derivative, Na2H2[(CH3)4N]6[Te2W20O70{Re(CO)3}2]·20H2O (1). Additionally, compound 1 showed excellent catalytic activity in the selective epoxidation of alkenes under comparatively mild reaction conditions.
Collapse
Affiliation(s)
- Jingkun Lu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Ping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Junwei Feng
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
24
|
Pudukudy M, Jia Q, Dong Y, Yue Z, Shan S. Magnetically separable and reusable rGO/Fe3O4 nanocomposites for the selective liquid phase oxidation of cyclohexene to 1,2-cyclohexane diol. RSC Adv 2019; 9:32517-32534. [PMID: 35529707 PMCID: PMC9072983 DOI: 10.1039/c9ra04685b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/28/2019] [Indexed: 12/02/2022] Open
Abstract
A series of magnetically separable rGO/Fe3O4 nanocomposites with various amounts of graphene oxide were successfully prepared by a simple ultrasonication assisted precipitation combined with a solvothermal method and their catalytic activity was evaluated for the selective liquid phase oxidation of cyclohexene using hydrogen peroxide as a green oxidant. The prepared materials were characterized using XRD, FTIR, FESEM, TEM, HRTEM, BET/BJH, XPS and VSM analysis. The presence of well crystallized Fe3O4 as the active iron species was seen in the crystal studies of the nanocomposites. The electron microscopy analysis indicated the fine surface dispersion of spherical Fe3O4 nanoparticles on the thin surface layers of partially-reduced graphene oxide (rGO) nanosheets. The decoration of Fe3O4 nanospheres on thin rGO layers was clearly observable in all of the nanocomposites. The XPS analysis was performed to evaluate the chemical states of the elements present in the samples. The surface area of the nanocomposites was increased significantly by increasing the amount of GO and the pore structures were effectively tuned by the amount of rGO in the nanocomposites. The magnetic saturation values of the nanocomposites were found to be sufficient for their efficient magnetic separation. The catalytic activity results show that the cyclohexene conversion reached 75.3% with a highest 1,2-cyclohexane diol selectivity of 81% over 5% rGO incorporated nanocomposite using H2O2 as the oxidant and acetonitrile as the solvent at 70 °C for 6 h. The reaction conditions were further optimized by changing the variables and a possible reaction mechanism was proposed. The enhanced catalytic activity of the nanocomposites for cyclohexene oxidation could be attributed to the fast accomplishment of the Fe2+/Fe3+ redox cycle in the composites due the sacrificial role of rGO and its synergistic effect with Fe3O4, originating from the conjugated network of π-electrons in its surface structure. The rapid and easy separation of the magnetic nanocomposites from the reaction mixture using an external magnet makes the present catalysts highly efficient for the reaction. Moreover, the catalyst retained its activity for five repeated runs without any drastic drop in the reactant conversion and product selectivity. A series of magnetically-separable and reusable rGO/Fe3O4 nanocomposites were successfully synthesized for the selective liquid-phase oxidation of cyclohexene to 1,2-cyclohexane-diol.![]()
Collapse
Affiliation(s)
- Manoj Pudukudy
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Qingming Jia
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Yanan Dong
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Zhongxiao Yue
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Shaoyun Shan
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| |
Collapse
|
25
|
Goldsmith CR. Aluminum and gallium complexes as homogeneous catalysts for reduction/oxidation reactions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Recent advances on controllable and selective catalytic oxidation of cyclohexene. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63050-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ma W, Yuan H, Wang H, Zhou Q, Kong K, Li D, Yao Y, Hou Z. Identifying Catalytically Active Mononuclear Peroxoniobate Anion of Ionic Liquids in the Epoxidation of Olefins. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04443] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenbao Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Haiyang Yuan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Qingqing Zhou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Kang Kong
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Difan Li
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yefeng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
28
|
Dias LD, Carrilho RMB, Henriques CA, Piccirillo G, Fernandes A, Rossi LM, Filipa Ribeiro M, Calvete MJF, Pereira MM. A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s108842461850027x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and characterization of a hybrid Mn(III)-porphyrin magnetic nanocomposite is described. Moreover, a sustainable methodology for epoxidation of olefins is reported, using O[Formula: see text] as a green oxidant and the magnetic nanoparticle as a recyclable catalyst. High activity in alkene oxidation was observed, with full selectivity for epoxide formation. The magnetic catalyst presented high stability, being recovered and reused in five consecutive runs without loss of catalytic activity or selectivity in cyclooctene oxidation. Moreover, the catalytic system showed very good reactivity toward epoxidation of a range of terminal, substituted, cyclic or acyclic, aliphatic and aromatic olefins, including terpene and steroid derivatives, affording a range of biologically relevant epoxides in excellent yields. The isobutyric acid, formed as side-product, was recovered with high yield and purity, which provides the potential reutilization of this important industrial product.
Collapse
Affiliation(s)
- Lucas D. Dias
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rui M. B. Carrilho
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - César A. Henriques
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Giusi Piccirillo
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Auguste Fernandes
- Centro de Química Estrutural, Instituto Técnico Superior, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Liane M. Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brasil
| | - M. Filipa Ribeiro
- Centro de Química Estrutural, Instituto Técnico Superior, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Mário J. F. Calvete
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Mariette M. Pereira
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
29
|
Xu Q, Li Y, Ban R, Li Z, Han X, Ma P, Singh V, Wang J, Niu J. Polyoxotungstates incorporated organophosphonate and nickel: synthesis, characterization and efficient catalysis for epoxidation of allylic alcohols. Dalton Trans 2018; 47:13479-13486. [DOI: 10.1039/c8dt02590h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
“Top-down” synthetic strategy was performed to incorporate nickel into the organophosphonate-based POTs showing superior catalysis for the epoxidation of allylic alcohols.
Collapse
Affiliation(s)
- Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Yingguang Li
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Ran Ban
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Zhao Li
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Xiao Han
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Vikram Singh
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
30
|
Mekrattanachai P, Liu J, Li Z, Cao C, Song W. Extremely low loading of Ru species on hydroxyapatite as an effective heterogeneous catalyst for olefin epoxidation. Chem Commun (Camb) 2018; 54:1433-1436. [DOI: 10.1039/c7cc08554k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An extremely low percentage of Ru species supported on hydroxyapatite exhibited high activity, excellent selectivity and good recyclability for the epoxidation of various olefins.
Collapse
Affiliation(s)
- Pagasukon Mekrattanachai
- Beijing National Laboratory for Molecular Sciences Laboratory of Molecular Nanostructures and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences Laboratory of Molecular Nanostructures and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhaohua Li
- Beijing National Laboratory for Molecular Sciences Laboratory of Molecular Nanostructures and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences Laboratory of Molecular Nanostructures and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences Laboratory of Molecular Nanostructures and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
31
|
Shul'pin GB, Vinogradov MM, Shul'pina LS. Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a review). Catal Sci Technol 2018. [DOI: 10.1039/c8cy00659h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, osmium complexes have found applications not only in thecis-hydroxylation of olefins but also very efficient in the oxygenation of C–H compounds (saturated and aromatic hydrocarbons and alcohols) by hydrogen peroxide as well as organic peroxides.
Collapse
Affiliation(s)
- Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
- Plekhanov Russian University of Economics
| | - Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
32
|
Levitsky MM, Bilyachenko AN, Shul'pin GB. Oxidation of C-H compounds with peroxides catalyzed by polynuclear transition metal complexes in Si- or Ge-sesquioxane frameworks: A review. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Ma W, Chen C, Kong K, Dong Q, Li K, Yuan M, Li D, Hou Z. Peroxotantalate-Based Ionic Liquid Catalyzed Epoxidation of Allylic Alcohols with Hydrogen Peroxide. Chemistry 2017; 23:7287-7296. [DOI: 10.1002/chem.201605661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Wenbao Ma
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Chen Chen
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Kang Kong
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Qifeng Dong
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Kun Li
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Mingming Yuan
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Difan Li
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials; Research Institute of Industrial Catalysis; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
34
|
Kirillova MV, Paiva PTD, Carvalho WA, Mandelli D, Kirillov AM. Mixed-ligand aminoalcohol-dicarboxylate copper(II) coordination polymers as catalysts for the oxidative functionalization of cyclic alkanes and alkenes. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractNew copper(II) catalytic systems for the mild oxidative C–H functionalization of cycloalkanes and cycloalkenes were developed, which are based on a series of mixed-ligand aminoalcohol-dicarboxylate coordination polymers, namely [Cu2(μ-dmea)2(μ-nda)(H2O)2]n·2nH2O (1), [Cu2(μ-Hmdea)2(μ-nda)]n·2nH2O (2), and [Cu2(μ-Hbdea)2(μ-nda)]n·2nH2O (3) that bear slightly different dicopper(II) aminoalcoholate cores, as well as on a structurally distinct dicopper(II) [Cu2(H4etda)2(μ-nda)]·nda·4H2O (4) derivative [abbreviations: H2nda, 2,6-naphthalenedicarboxylic acid; Hdmea, N,N′-dimethylethanolamine; H2mdea, N-methyldiethanolamine; H2bdea, N-butyldiethanolamine; H4etda, N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine]. Compounds 1–4 act as homogeneous catalysts in the three types of model catalytic reactions that proceed in aqueous acetonitrile medium under mild conditions (50–60°C): (i) the oxidation of cyclohexane by hydrogen peroxide to cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone, (ii) the oxidation of cycloalkenes (cyclohexene, cyclooctene) by hydrogen peroxide to a mixture of different oxidation products, and (iii) the single-pot hydrocarboxylation of cycloalkanes (cyclopentane, cyclohexane, cycloheptane, cyclooctane) by carbon monoxide, water, and a peroxodisulfate oxidant into the corresponding cycloalkanecarboxylic acids. The catalyst and substrate scope as well as some mechanistic features were investigated; the highest catalytic activity of 1–4 was observed in the hydrocarboxylation of cycloalkanes, allowing to achieve up to 50% total product yields (based on substrate).
Collapse
Affiliation(s)
- Marina V. Kirillova
- 1Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Polyana Tomé de Paiva
- 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bangu, Santo André, SP, Brazil
| | - Wagner A. Carvalho
- 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bangu, Santo André, SP, Brazil
| | - Dalmo Mandelli
- 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bangu, Santo André, SP, Brazil
| | - Alexander M. Kirillov
- 1Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| |
Collapse
|
35
|
|
36
|
Vanoye L, Wang J, Pablos M, de Bellefon C, Favre-Réguillon A. Epoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidation. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00309e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mukaiyama reaction was performed G/L continuous-flow microreactor. In less than 5 minutes at room temperature, cyclooctene was efficiently transformed to the corresponding epoxide using O2 as oxidant and aldehyde as co-reductant.
Collapse
Affiliation(s)
- Laurent Vanoye
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Jiady Wang
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Mertxe Pablos
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Claude de Bellefon
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Alain Favre-Réguillon
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| |
Collapse
|