1
|
Watson LJ, Hill AF. C-H activation in bimetallic rhodium complexes to afford N-heterocyclic carbene pincer complexes. Dalton Trans 2023; 52:2164-2174. [PMID: 36723105 DOI: 10.1039/d2dt03984b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pro-ligands 1,8-bis(di-R-phosphinomethyl)-2,3-dihydroperimidine (RH2Pm, R = phenyl, cyclohexyl) react with [RhCl(CE)(PPh3)2] (E = O, S) to afford the bimetallic complexes [RhCl(CE)(μ-RH2Pm)]2 (E = O, S). Upon heating, these species undergo double C-H activation to afford the N-heterocyclic carbene (NHC) pincer complexes [RhCl(RPm)]. Reduction of [RhCl(CO)(μ-PhH2Pm)]2 with KC8 results in the bimetallic rhodium(0) complex, [Rh(μ-CO)(PhH2Pm)]2, with a formal Rh-Rh bond and a hydrogen-bonding interaction between rhodium and the central methylene group (C-H⋯Rh = 2.802 Å). Upon treatment with tritylium, ferrocenium or triphenylcyclopropenium tetrafluoroborates this species undergoes double C-H activation to afford a mononuclear NHC pincer complex salt, [Rh(CO)(PhPm)]BF4. Treatment of [RhCl(CO)(PhH2Pm)]2 with lithium (trimethylsilyl)acetylide provides another bimetallic species, [Rh(CCSiMe3)(CO)(PhH2Pm)]2, however heating this species does not proceed cleanly to the monomeric NHC complex, [Rh(CCSiMe3)(CO)(PhPm)] which may however be obtained from [RhCl(RPm)] and LiCCSiMe3.
Collapse
Affiliation(s)
- Lachlan J Watson
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | - Anthony F Hill
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
2
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
3
|
Curto SG, de las Heras LA, Esteruelas MA, Oliván M, Oñate E, Vélez A. Reactions of POP-pincer rhodium(I)-aryl complexes with small molecules: coordination flexibility of the ether diphosphine. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactions of the aryl complexes Rh(aryl){κ3-P,O,P-[xant(PiPr2)2]} (1; aryl = 3,5-Me2C6H3 (a), C6H5 (b), 3,5-Cl2C6H3 (c), 3-FC6H4 (d); xant(PiPr2)2 = 9,9-dimethyl-4,5-bis-(diisopropylphosphino)xanthene) with O2, CO, and MeO2CC≡CCO2Me have been performed. Under 1 atm of O2, the pentane solutions of complexes 1 afford the dinuclear peroxide derivatives [Rh(aryl){κ2-P,P-xant(PiPr2)2}]2(μ-O2)2 (2a–2d) as yellow solids. In solution, these species are unstable. In dichloromethane, at room temperature, they are transformed into the dioxygen adducts Rh(aryl)(η2-O2){κ3-P,O,P-[xant(PiPr2)2]} (3a–3d), as a result of the rupture of the double peroxide bridge and the reduction of the metal center. Complex 3b decomposes in benzene, at 50 °C, to give diphosphine oxide, phenol, and biphenyl. Complexes 1 react with CO to give the square-planar mono carbonyl derivatives Rh(aryl)(CO){κ2-P,P-[xant(PiPr2)2]} (4a–4d), which under carbon monoxide atmosphere evolve to benzoyl species Rh{C(O)aryl}(CO){κ2-P,P-[xant(PiPr2)2]} (5a–5d), resulting from the migratory insertion of CO into the Rh-aryl bond and the coordination of a second CO molecule. The transformation is reversible; under vacuum, complexes 5 regenerate the precursors 4. The addition of the activated alkyne to complexes 1b and 1d initially leads to the π-alkyne intermediates Rh(aryl){η2-C(CO2Me)≡C(CO2Me)}{κ3-P,O,P-[xant(PiPr2)2]} (6b, 6d), which evolve to the alkenyl derivatives Rh{(E)-C(CO2Me)=C(CO2Me)aryl}{κ3-P,O,P-[xant(PiPr2)2]} (7b, 7d). The diphosphine adapts its coordination mode to the stability requirements of the different complexes, coordinating cis-κ2-P,P in complexes 2, fac-κ3-P,O,P in compounds 3, trans-κ2-P,P in the mono carbonyl derivatives 4 and 5, and mer-κ3-P,O,P in products 6 and 7.
Collapse
Affiliation(s)
- Sheila G. Curto
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Laura A. de las Heras
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Andrea Vélez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
5
|
Abstract
In this account we describe studies on the reactivity of rhodium(I) complexes of the type [Rh(E)(PEt3)3], where E represents hydrido, fluorido, germyl, boryl or silyl ligands, towards fluorinated olefins. The results are compared with those reported by other research groups on fluoroolefins, as well as with the chemistry of compounds [Rh(E)(PEt3)3] towards fluoroaromatics in terms of selectivity and mechanisms.1 Introduction2 Reactivity Towards Fluoroolefins2.1 Reactivity of Hexafluoropropene2.2 Reactivity of (E)-1,2,3,3,3-Pentafluoropropene2.3 Reactivity of 2,3,3,3-Tetrafluoropropene and (E)-1,3,3,3-Tetrafluoropropene2.4 Reactivity of 3,3,3-Trifluoropropene2.5 Reactivity of Pentafluorostyrene3 Conclusion and Perspective
Collapse
Affiliation(s)
- Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin
| | | |
Collapse
|
6
|
Xu C, Talavera M, Sander S, Braun T. C-H and C-F bond activation reactions of pentafluorostyrene at rhodium complexes. Dalton Trans 2019; 48:16258-16267. [PMID: 31617524 DOI: 10.1039/c9dt03371h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The rhodium(i) complexes [Rh(Bpin)(PEt3)3] (1), [Rh(H)(PEt3)3] (5) and [Rh(Me)(PEt3)3] (14) were employed in reactions with pentafluorostyrene affording coordination of the olefin and C-F or C-H bond activation. Control of the reaction conditions allowed for selective activation reactions at different positions at the fluorinated aromatic ring. The rhodacycle trans-[Rh(F)(CH2CH2(2-C6F4))(PEt3)2] (7) was identified as an intermediate for an activation at the 2-position. Reactivity studies of the latter with CO led to the generation of trans-[Rh(F)(CH2CH2C6F4)(CO)(PEt3)2] (10). Stoichiometric and catalytic hydroboration reactions were achieved using complexes 1 or 5 as catalysts.
Collapse
Affiliation(s)
- Conghui Xu
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Maria Talavera
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Stefan Sander
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
7
|
Takahashi S, Bellan E, Baceiredo A, Saffon‐Merceron N, Massou S, Nakata N, Hashizume D, Branchadell V, Kato T. A Stable N‐Hetero
‐Rh
‐Metallacyclic Silylene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shintaro Takahashi
- Department of ChemistryGraduate School of Science and EngineeringSaitama University, Shimo-okubo Sakura-ku Saitama 338-8570 Japan
| | - Ekaterina Bellan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS 118 route de Narbonne 31062 Toulouse France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS 118 route de Narbonne 31062 Toulouse France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (FR 2599)Université de Toulouse, CNRS 118 route de Narbonne 31062 Toulouse France
| | - Stéphane Massou
- Institut de Chimie de Toulouse (FR 2599)Université de Toulouse, CNRS 118 route de Narbonne 31062 Toulouse France
| | - Norio Nakata
- Department of ChemistryGraduate School of Science and EngineeringSaitama University, Shimo-okubo Sakura-ku Saitama 338-8570 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Vicenç Branchadell
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS 118 route de Narbonne 31062 Toulouse France
| |
Collapse
|
8
|
Takahashi S, Bellan E, Baceiredo A, Saffon-Merceron N, Massou S, Nakata N, Hashizume D, Branchadell V, Kato T. A Stable N-Hetero-Rh-Metallacyclic Silylene. Angew Chem Int Ed Engl 2019; 58:10310-10314. [PMID: 31132319 DOI: 10.1002/anie.201904594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/27/2019] [Indexed: 01/07/2023]
Abstract
A cyclic (amino)metal-substituted dicoordinated silylene derivative has been synthesized and fully characterized. Of particular interest is that the N-hetero-RhI -metallacyclic silylene exhibits a distorted tetrahedral geometry around the rhodium atom and a considerably shortened Si-Rh bond (2.138 Å) compared to classical Si-Rh single bonds (ca. 2.30-2.35 Å). A theoretical investigation reveals that the geometrical deviation around the rhodium center from the classical square-planar to a tetrahedral geometry increases the π-donating and σ-accepting character of the rhodium atom, thereby efficiently stabilizing the silylene moiety.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ekaterina Bellan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Stéphane Massou
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
9
|
Torres Ò, Pfister N, Braun T, Wittwer P. C-F activation of perfluorophenazine at nickel: selectivity and mechanistic investigations. Dalton Trans 2019; 48:6153-6161. [PMID: 30916690 DOI: 10.1039/c9dt00780f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The reactivity of [Ni(cod)2] towards perfluorophenazine in the presence of phosphines is reported. When PiPr3 and PCy3 are used, an initial κ-(N) coordination of the nickel centre to the nitrogen atom of the perfluorophenazine ring occurs, forming the dark blue complexes [Ni{κ-(N)-C12N2F8}(PiPr3)2] (1) and [Ni{κ-(N)-C12N2F8}(PCy3)2] (2). Complex 1 was structurally characterized by X-ray diffraction analysis. The complexes rearranged by regioselective C-F activation of the perfluorophenazine ring in the 2-position to yield complexes trans-[NiF(2-C12N2F7)(PiPr3)2] (5) and trans-[NiF(2-C12N2F7)(PCy3)2] (6). The structure of 6 was also determined by X-ray diffraction analysis. Kinetic measurements for the decrease of 1 at different temperatures reveal a first order reaction with ΔH‡ = 19 ± 7 kcal mol-1. Initially, small amounts of an intermediate, assigned as [Ni(η2-1,2-C12N2F8)(PiPr3)2] (3), were observed, which exhibits a 1,2-η2 coordination of the perfluorophenazine. DFT calculations on the same transformation were also computed, which suggest that both a phosphine-assisted mechanism and an oxidative addition can be operating reaction pathways. The 1,2-η2 complex [Ni(η2-1,2-C12N2F8)(PEt3)2] (4) was obtained when PEt3 was used as ligand, and an unstable dark red complex trans-[NiF(2-C12N2F7)(PEt3)2] (7) formed rapidly by C-F activation. The reactivity of the perfluorophenazine was compared with those of perfluorodibenzo-p-dioxin. In this case, no prior coordination was observed and the C-F activation took place in a less selective manner forming trans-[NiF(1-C12O2F7)(PiPr3)2] (8) and trans-[NiF(2-C12O2F7)(PiPr3)2] (9), outlining the role of the nitrogen for the selectivity of the process. Treatment of two equivalents of [Ni(cod)2] and four equivalents of PiPr3 with perfluorophenazine afforded a double C-F activation to give [{trans-(PiPr3)2NiF}2(2,7-C12N2F6)] (10).
Collapse
Affiliation(s)
- Òscar Torres
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
10
|
Hlina JA, Wells JAL, Pankhurst JR, Love JB, Arnold PL. Uranium rhodium bonding in heterometallic complexes. Dalton Trans 2018; 46:5540-5545. [PMID: 28154865 PMCID: PMC5436036 DOI: 10.1039/c6dt04570g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UIV–RhI intermetallic distances in the U2Rh2 complex (left, 2.7601(5) Å) and URh complex (right, 2.7630(5) Å) are very short and almost identical in the solid state even though solution electrochemistry suggests very different metal-based reduction processes.
The heterotetra- and bimetallic uranium(iv)–rhodium(i) complexes [UIVI2(μ-OArP-1κ1O,2κ1P)2RhI(μ-I)]2 (2) (ArPO– = 2-(diphenylphosphino)-6-tert-butyl-4-methylphenoxide) and UIVI(μ-I)(μ-OArP-1κ1O,2κ1P)3RhI (3) were prepared by treatment of UIVI(OArP-κ2O,P)3 (1) with rhodium(i) iodide olefin complexes. The reaction of 1 with the monodentate cyclooctene (coe) rhodium(i) precursor [(coe)2RhII]2 gives only the bimetallic complex [UIVRhI] 3, and with the diene [(cod)RhII]2 (5) (cod = 1,5-cyclooctadiene), mixtures of [UIVRhI]2 complex 2 and [UIVRhI] 3 along with (cod)RhIOArP-κ2O,P (4), a RhI side-product from the formation of 2. The complexes were characterised by single crystal X-ray diffraction, NMR and UV-vis-NIR spectroscopy, and electrochemistry. The UIV–RhI intermetallic distances in 2 (2.7601(5) Å) and 3 (2.7630(5) Å) are among the shortest between f-elements and transition metals reported to date. Despite almost identical U–Rh bond lengths in the solid state, in solution only weak, and very different interactions between the metal centres are found.
Collapse
Affiliation(s)
- J A Hlina
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Edinburgh EH9 3FJ, UK.
| | | | | | | | | |
Collapse
|
11
|
Knopf I, Courtemanche MA, Cummins CC. Cobalt Complexes Supported by cis-Macrocyclic Diphosphines: Synthesis, Reactivity, and Activity toward Coupling Carbon Dioxide and Ethylene. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ioana Knopf
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Marc-André Courtemanche
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
12
|
Eisenstein O, Milani J, Perutz RN. Selectivity of C–H Activation and Competition between C–H and C–F Bond Activation at Fluorocarbons. Chem Rev 2017; 117:8710-8753. [DOI: 10.1021/acs.chemrev.7b00163] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Odile Eisenstein
- Institut
Charles Gerhardt, UMR 5253 CNRS Université Montpellier, cc 1501,
Place E. Bataillon, 34095 Montpellier, France
- Centre
for Theoretical and Computational Chemistry (CTCC), Department of
Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Jessica Milani
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
13
|
Moore JT, Smith NE, Lu CC. Structure and dynamic NMR behavior of rhodium complexes supported by Lewis acidic group 13 metallatranes. Dalton Trans 2017; 46:5689-5701. [DOI: 10.1039/c6dt04769f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Z-type complexes featuring Rh → Al and Rh → Ga interactions show distorted Rh centers and fluxionality on the NMR timescale.
Collapse
|
14
|
Baumgarth H, Meier G, Braun T, Braun‐Cula B. Rhodium and Iridium Fluorido and Bifluorido Complexes Derived from Peroxido Precursors. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanna Baumgarth
- Humboldt‐Universität zu BerlinDepartment of ChemistryBrook‐Taylor‐Straße 212489BerlinGermany
| | - Gregor Meier
- Humboldt‐Universität zu BerlinDepartment of ChemistryBrook‐Taylor‐Straße 212489BerlinGermany
| | - Thomas Braun
- Humboldt‐Universität zu BerlinDepartment of ChemistryBrook‐Taylor‐Straße 212489BerlinGermany
| | - Beatrice Braun‐Cula
- Humboldt‐Universität zu BerlinDepartment of ChemistryBrook‐Taylor‐Straße 212489BerlinGermany
| |
Collapse
|
15
|
Campos J, López-Serrano J, Peloso R, Carmona E. Methyl Complexes of the Transition Metals. Chemistry 2016; 22:6432-57. [PMID: 26991740 DOI: 10.1002/chem.201504483] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 01/11/2023]
Abstract
Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.
Collapse
Affiliation(s)
- Jesús Campos
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química, Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Riccardo Peloso
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química, Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ernesto Carmona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química, Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
16
|
Ahrens T, Teltewskoi M, Ahrens M, Braun T, Laubenstein R. Competing reaction pathways of 3,3,3-trifluoropropene at rhodium hydrido, silyl and germyl complexes: C–F bond activation versus hydrogermylation. Dalton Trans 2016; 45:17495-17507. [DOI: 10.1039/c6dt03027k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of the Rh complexes [Rh(L)(PEt3)3] (L = H, Si(OEt)3, GePh3) towards CH2CHCF3 was investigated which involve C–F bond activation and germylation reactions.
Collapse
Affiliation(s)
- Theresia Ahrens
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
| | - Michael Teltewskoi
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
| | - Mike Ahrens
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
| | - Reik Laubenstein
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
| |
Collapse
|
17
|
Drover MW, Schafer LL, Love JA. Isocyanate deinsertion from κ1-O amidates: facile access to perfluoroaryl rhodium(i) complexes. Dalton Trans 2015; 44:19487-93. [DOI: 10.1039/c5dt01981h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perfluorophenyl-subsituted amidates undergo unprecedented C6F5 migration to Rh(i) on heating, providing a new route to Rh-C6F5 organometallic fragments.
Collapse
Affiliation(s)
- Marcus W. Drover
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Laurel L. Schafer
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Jennifer A. Love
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|