Niu X, Du Y, He J, Li X, Wen G. Hydrothermal Synthesis of Co-Exposed-Faceted WO
3 Nanocrystals with Enhanced Photocatalytic Performance.
NANOMATERIALS (BASEL, SWITZERLAND) 2022;
12:nano12162879. [PMID:
36014744 PMCID:
PMC9415315 DOI:
10.3390/nano12162879]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
In this paper, rod-shaped, cuboid-shaped, and irregular WO3 nanocrystals with different co-exposed crystal facets were prepared for the first time by a simple hydrothermal treatment of tungstic acid colloidal suspension with desired pH values. The crystal structure, morphology, specific surface area, pore size distribution, chemical composition, electronic states of the elements, optical properties, and charge migration behavior of as-obtained WO3 products were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fully automatic specific surface area and porosity analyzer, UV-vis absorption spectra, photoluminescence (PL) spectra, and electrochemical impedance spectroscopy (EIS). The photocatalytic performances of the synthesized pHx-WO3 nanocrystals (x = 0.0, 1.5, 3.0, 5.0, and 7.0) were evaluated and compared with the commercial WO3 (CM-WO3) nanocrystals. The pH7.0-WO3 nanocrystals with co-exposed {202} and {020} facets exhibited highest photocatalytic activity for the degradation of methylene blue solution, which can be attributed to the synergistic effects of the largest specific surface area, the weakest luminescence peak intensity and the smallest arc radius diameter.
Collapse