1
|
Luo W, Yang X, Cao H, Weng L, Feng G, Fu XZ, Luo JL, Liu J. Unravelling the origin of long-term stability for Cs + and Sr 2+ solidification inside sodalite. Phys Chem Chem Phys 2022; 24:18083-18093. [PMID: 35876809 DOI: 10.1039/d1cp04164a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cesium (Cs+) and strontium (Sr2+) ions are the main fission byproducts in the reprocessing of spent nuclear fuels for nuclear power plants. Their long half-live period (30.17 years for 137Cs and 28.80 years for 90Sr) makes them very dangerous radionuclides. Hence the solidification of Cs+ and Sr2+ is of paramount importance for preventing them from entering the human food chain through water. Despite tremendous efforts for solidification, the long-term stability remains a great challenge due to the experimental limitation and lack of good evaluation indicators for such long half-life radionuclides. Using density functional theory (DFT), we investigate the origin of long-term stability for the solidification of Cs+ and Sr2+ inside sodalite and establish that the exchange energy and the diffusion barrier play an important role in gaining the long-term stability both thermodynamically and kinetically. The acidity/basicity, solvation, temperature, and diffusion effect are comprehensively studied. It is found that solidification of Cs+ and Sr2+ is mainly attributed to the solvation effect, zeolitic adsorption ability, and diffusion barriers. The present study provides theoretical evidence to use geopolymers to adsorb Cs+ and Sr2+ and convert the adsorbed geopolymers to zeolites to achieve solidification of Cs+ and Sr2+ with long-term stability.
Collapse
Affiliation(s)
- Wenzhi Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaoqiang Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Hailin Cao
- College of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518000, P. R. China
| | - Luqian Weng
- Shenzhen Aerospace New Materials Technology Cooperation, Shenzhen, P. R. China
| | - Gang Feng
- Institute of Applied Chemistry, College of Chemistry, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Malakhova M, Gorbunov A, Ozerov N, Korniltsev I, Ermolov K, Bezzubov S, Kovalev V, Vatsouro I. Triazolated calix[4]semitubes: assembling strategies towards long multicalixarene architectures. Org Chem Front 2022. [DOI: 10.1039/d2qo00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cone and 1,3-alternate calix[4]arenes bearing pairs of 2-azidoethyl or propargyl groups, and 1,3-alternate calix[4]arenes having four 2-azidoethyl, four propargyl groups or pairs of 2-azidoethyl and silylated propargyl groups were explored...
Collapse
|
3
|
Patra K, Sadhu B, Sengupta A, Patil CB, Mishra RK, Kaushik CP. Achieving highly efficient and selective cesium extraction using 1,3-di-octyloxycalix[4]arene-crown-6 in n-octanol based solvent system: experimental and DFT investigation. RSC Adv 2021; 11:21323-21331. [PMID: 35478782 PMCID: PMC9034044 DOI: 10.1039/d1ra02661e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 01/12/2023] Open
Abstract
Due to the long half-life of 137Cs (t1/2 ∼ 30 years), the selective extraction of cesium (Cs) from high level liquid waste is of paramount importance in the back end of the nuclear fuel cycle to avoid long term surveillance of high radiotoxic waste. As 1,3-di-octyloxycalix[4]arene-crown-6 (CC6) is suggested to be a promising candidate for selective Cs extraction, the improvement in the Cs extraction efficiency by CC6 has been investigated through the optimization of the effect of dielectric media on the extraction process. The effects of the feed acid (HNO3, HCl, and HClO4) and the composition of the diluents for the ligand in the organic phase on the extraction efficiency of Cs have been investigated systematically. In 100% n-octanol medium, Cs is found to form a 1 : 1 ion-pair complex with CC6 (0.03 M) providing a very high distribution ratio of DCs ∼ 22, suggesting n-octanol as the most suitable diluent for Cs extraction. No significant interference of other relevant cations such as Na, Mg and Sr was observed on the DCs value in the optimized solvent system. Density functional theory (DFT) based calculations have been carried out to elucidate the reason of ionic selectivity and enhanced Cs extraction efficiency of CC6 in the studied diluent systems. In addition to the ionic size-based selectivity of the crown-6 cavity, the polarity of the organic solvent system, the hydration energy of the ion, and the relative reorganization of CC6 upon complexation with Cs are understood to have roles in achieving the enhanced efficiency for the extraction of Cs by the CC6 extractant in nitrobenzene medium. Separation scheme was developed for selective extraction of long-lived fission product 137Cs using substituted calix crown 6 ether from aqueous acidic solution.![]()
Collapse
Affiliation(s)
- Kankan Patra
- Nuclear Recycle Board, Bhabha Atomic Research Centre Tarapur 401504 India
| | - Biswajit Sadhu
- Health Physics Division, Bhabha Atomic Research Centre Mumbai 400 085 India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India .,Homi Bhabha National Institute Anushaktinagar Mumbai 400 094 India
| | - C B Patil
- Nuclear Recycle Board, Bhabha Atomic Research Centre Tarapur 401504 India
| | - R K Mishra
- Homi Bhabha National Institute Anushaktinagar Mumbai 400 094 India.,Nuclear Recycle Group, Bhabha Atomic Research Centre Mumbai 400 085 India
| | - C P Kaushik
- Homi Bhabha National Institute Anushaktinagar Mumbai 400 094 India.,Nuclear Recycle Group, Bhabha Atomic Research Centre Mumbai 400 085 India
| |
Collapse
|
4
|
Wang T, Liu J, Cao X. Revealing the Dynamic Process of Ion Pair Recognition by Calix[4]pyrrole: A Case Study of Cesium Chloride. J Phys Chem Lett 2021; 12:3253-3259. [PMID: 33764069 DOI: 10.1021/acs.jpclett.1c00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion pair receptors based on meso-octamethylcalix[4]pyrrole (CP) have been extensively investigated over recent years. However, the nature of their ion pair recognition has barely been reported, even for CP itself. Herein, cesium chloride was used as a guest ion pair to investigate the dynamic process of ion pair recognition by CP, and the "capture-bind" mechanism for this process is proposed for the first time. The results reveal that Cs+ can be first captured by Cl- at long distances, and then it is bound to the cavity through almost equal contributions of Cl- and CP. Although the effective charge of Cl- is obviously reduced by charge-transfer, the electrostatic interactions between Cl- and Cs+ are still strong even at long distances in the presence of CP.
Collapse
Affiliation(s)
- Teng Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, P. R. China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, Taishan University, Taian, 271021, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, P. R. China
| |
Collapse
|
5
|
Utilization of Cucurbit[6]uril as an effective adsorbent for the remediation of Phthalocyanine and Procion golden yellow dyes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Peng S, He Q, Vargas-Zúñiga GI, Qin L, Hwang I, Kim SK, Heo NJ, Lee CH, Dutta R, Sessler JL. Strapped calix[4]pyrroles: from syntheses to applications. Chem Soc Rev 2020; 49:865-907. [PMID: 31957756 DOI: 10.1039/c9cs00528e] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.
Collapse
Affiliation(s)
- Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Gabriela I Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Lei Qin
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Inhong Hwang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Nam Jung Heo
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University and IMSFT, Chun-Cheon 24341, Korea.
| | - Ranjan Dutta
- Department of Chemistry, Kangwon National University and IMSFT, Chun-Cheon 24341, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA. and Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Sadhu B, Dolg M. Enhancing Actinide(III) over Lanthanide(III) Selectivity through Hard-by-Soft Donor Substitution: Exploitation and Implication of Near-Degeneracy-Driven Covalency. Inorg Chem 2019; 58:9738-9748. [DOI: 10.1021/acs.inorgchem.9b00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswajit Sadhu
- Health Physics Division, Health Safety & Environment Group, Bhabha Atomic Research Center (BARC), Mumbai 400 085. India
| | - Michael Dolg
- Institute for Theoretical Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| |
Collapse
|
8
|
Abstract
Cation and anion recognition have both played central roles in the development of supramolecular chemistry. Much of the associated research has focused on the development of receptors for individual cations or anions, as well as their applications in different areas. Rarely is complexation of the counterions considered. In contrast, ion pair recognition chemistry, emerging from cation and anion coordination chemistry, is a specific research field where co-complexation of both anions and cations, so-called ion pairs, is the center of focus. Systems used for the purpose, known as ion pair receptors, are typically di- or polytopic hosts that contain recognition sites for both cations and anions and which permit the concurrent binding of multiple ions. The field of ion pair recognition has blossomed during the past decades. Several smaller reviews on the topic were published roughly 5 years ago. They provided a summary of synthetic progress and detailed the various limiting ion recognition modes displayed by both acyclic and macrocyclic ion pair receptors known at the time. The present review is designed to provide a comprehensive and up-to-date overview of the chemistry of macrocycle-based ion pair receptors. We specifically focus on the relationship between structure and ion pair recognition, as well as applications of ion pair receptors in sensor development, cation and anion extraction, ion transport, and logic gate construction.
Collapse
Affiliation(s)
- Qing He
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Gabriela I Vargas-Zúñiga
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seung Hyun Kim
- Department of Chemistry and Research Institute of Natural Science , Gyeongsang National University , Jinju , 660-701 , Korea
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science , Gyeongsang National University , Jinju , 660-701 , Korea
| | - Jonathan L Sessler
- Institute for Supramolecular Chemistry and Catalysis , Shanghai University , Shanghai 200444 , P.R. China.,Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
9
|
Mishra L, Sawant PD, Sundararajan M, Bandyopadhyay T. Binding of Cm(III) and Th(IV) with Human Transferrin at Serum pH: Combined QM and MD Investigations. J Phys Chem B 2019; 123:2729-2744. [PMID: 30864809 DOI: 10.1021/acs.jpcb.8b09473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (sTf) can also function as a noniron metal transporter since only 30% of it is typically saturated with a ferric ion. While this function of sTf can be fruitfully utilized for targeted delivery of certain metal therapeutics, it also runs the risk of trafficking the lethal radionuclides into cells. A large number of actinide (An) ions are known to bind to the iron sites of sTf although molecular-level understanding of their binding is unclear. Understanding the radionuclide interaction with sTf is a primary step toward future design of their decorporating agents since irrespective of the means of contamination, the radionuclides are absorbed and transported by blood before depositing into target organs. Here, we report an extensive multiscale modeling approach of two An (curium(III) and thorium(IV)) ions' binding with sTf at serum physiological pH. We find that sTf binds both the heavy ions in a closed conformation with carbonate as synergistic anions and the An-loaded sTf maintains its closed conformation even after 100 ns of equilibrium molecular dynamics (MD) simulations. MD simulations are performed in a polarizable water environment, which also incorporates electronic continuum corrections for ions via charge rescaling. The molecular details of the An coordination and An exchange free energies with iron in the interdomain cleft of the protein are evaluated through a combination of quantum mechanical (QM) and MD studies. In line with reported experimental observations, well-tempered metadynamics results of the ions' binding energetics show that An-sTf complexes are less stable than Fe-sTf. Additionally, curium(III) is found to bind more weakly than thorium(IV). The latter result might suggest relative attenuation of thorium(IV) cytotoxicity when compared with curium(III).
Collapse
|
10
|
Sadhu B, Mishra V. The coordination chemistry of lanthanide and actinide metal ions with hydroxypyridinone-based decorporation agents: orbital and density based analyses. Dalton Trans 2018; 47:16603-16615. [PMID: 30417921 DOI: 10.1039/c8dt03262a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of the mitigation of the biological effects of internal radionuclide contamination and for efficient decorporation, the design and development of efficient chelators for lanthanide and actinide metal ions has become a central issue. The pioneering work of Raymond and coworkers (Chem. Rev., 2003, 103, 4207-4282) led to the development of siderophore-related hydroxypyridinonate ligands for possible treatment of internalized radionuclides. However, the structure-function relationship of Ln/An bound to these ligands, particularly the bonding and coordination aspects are not clearly understood at the atomic level. Here, we have investigated the structure, binding and energetics of trivalent and tetravalent Ln/An (Sm3+, Eu3+, Am3+, Cm3+, Th4+, Pu4+) ions with spermine-based octadentate hydroxypyridinonate chelators, namely 3,4,3-LI(1,2-HOPO) and its 3,3,3 variant, using relativistic density functional theory (DFT). Furthermore, we have performed orbital and density based analyses to elucidate the nature of bonding in these complexes. In accordance with the experimental stability constant, we found the maximum binding free energy for An4+ (Pu4+, Th4+) as compared to trivalent metal ions. CDA and ECDA analyses along with orbital-based population analyses confirmed the higher ligand to metal charge transfer for An4+ than for trivalent metal ions. Furthermore, the aromaticity index analysis suggested the presence of crucial chelatoaromatic stabilization for all these metal ions with the maximum for An4+. QTAIM descriptors indicated that the binding of An/Ln with the hard oxygen donor of the ligands is of the donor-acceptor type but a higher degree of covalency exists for actinides as compared to lanthanides. Furthermore, QTAIM and molecular orbital analysis confirmed that such covalency is of the energy-driven type and strictly originates from the orbital mixing event of An-5f orbitals with the ligand orbitals.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India.
| | | |
Collapse
|
11
|
Macrocycles for the complexation of radiocesium: a concise review of crystallographic and computational studies. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Selective detection of Hg(II) with benzothiazole-based fluorescent organic cation and the resultant complex as a ratiometric sensor for bromide in water. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sadhu B, Sundararajan M, Bandyopadhyay T. Efficient Separation of Europium Over Americium Using Cucurbit-[5]-uril Supramolecule: A Relativistic DFT Based Investigation. Inorg Chem 2016; 55:598-609. [DOI: 10.1021/acs.inorgchem.5b01627] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division and ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai−400 085, India
| | - Mahesh Sundararajan
- Radiation Safety Systems Division and ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai−400 085, India
| | - Tusar Bandyopadhyay
- Radiation Safety Systems Division and ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai−400 085, India
| |
Collapse
|