1
|
Bru F, Charman RSC, Bourda L, Van Hecke K, Grimaud L, Liptrot DJ, Cazin CSJ. A simply accessible organometallic system to gauge electronic properties of N-heterocyclic carbenes. Dalton Trans 2024; 53:16030-16037. [PMID: 39291668 DOI: 10.1039/d4dt02584a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The intricate σ and π-bonding of N-heterocyclic carbenes (NHCs) to metals and the need to quantify their electronic properties to rationalize reactivity of complexes have resulted in the creation of numerous methodologies to understand the NHC-metal interaction which are, as we now show, flawed. Our search for a unified, easily accessible system to gauge these fundamental properties has resulted in the discovery of two systems that highlight the flaws present in existing systems and provide a more accurate measure of the NHC ligand electronic properties.
Collapse
Affiliation(s)
- Francis Bru
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| | - Rex S C Charman
- Department of Chemistry, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laurens Bourda
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| | - Laurence Grimaud
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - David J Liptrot
- Department of Chemistry, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Tonis E, Tzouras NV, Bracho Pozsoni N, Saab M, Bhandary S, Van Hecke K, Nelson DJ, Nahra F, Nolan SP, Vougioukalakis GC. Modular Synthesis of Azines Bearing a Guanidine Core from N-Heterocyclic Carbene (NHC)-Derived Selenoureas and Diazo Reagents. Chemistry 2024; 30:e202401816. [PMID: 38989823 DOI: 10.1002/chem.202401816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024]
Abstract
N-Heterocyclic carbene (NHC)-derived selenoureas comprise a fundamentally important class of NHC derivatives, with key applications in coordination chemistry and the determination of NHC electronic properties. Considering the broad reactivity of chalcogen-containing compounds, it is surprising to note that the use of NHC-derived selenoureas as organic synthons remains essentially unexplored. The present contribution introduces a novel, straightforward transformation leading to azines bearing a guanidine moiety, through the reaction of a wide range of NHC-derived selenoureas with commercially available diazo compounds, in the presence of triphenylphosphine. This transformation offers a new approach to such products, having biological, materials chemistry, and organic synthesis applications. The guanidine-bearing azines are obtained in excellent yields, with all manipulations taking place in air. A reaction mechanism is proposed, based on both experimental mechanistic findings and density functional theory (DFT) calculations. A one-pot, multicomponent transesterification reaction between selenoureas, α-diazoesters, alcohols, and triphenylphosphine was also developed, providing highly functionalized azines.
Collapse
Affiliation(s)
- Efstathios Tonis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos V Tzouras
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Nestor Bracho Pozsoni
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Marina Saab
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Subhrajyoti Bhandary
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | - Fady Nahra
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
- VITO (Flemish Institute for Technological Research), Boeretang 200, 2400, Mol, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Georgios C Vougioukalakis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
3
|
Soleymani-Babadi S, Salahshournia B, Beheshti A, Bahrani-Pour M, Arefi-Nasab H, Mayer P, Fortin D, Cabana H, Harvey PD. Important Counteranion Effect on Adsorption Efficacity of Hydrogen Sulfide by Silver(I)-Dithione Coordination Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27875-27886. [PMID: 38743850 DOI: 10.1021/acsami.4c02350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Four new coordination polymers (CPs) have been prepared and evaluated for their efficacy in adsorbing hydrogen sulfide. The reactions of the structurally flexible assembling dithione ligand, L, with different silver(I) salts lead to four new metal-organic coordination architectures (CPs I, III, V, and VIII) exhibiting either one- or two-dimensional networks. CP I, 2D-[(Ag2Cl2)L]n, exhibits a linear series of rhomboid (S)2Ag(μ2-Cl)2Ag(S)2 secondary building units (SBUs) where S is one of the thione functions of L, altogether forming a 2D-network. CP III, 2D-[(AgI)L]n, is built upon parallel staircase-shaped 1D-[Ag2(μ3-I)2]n SBUs bridged by S atoms of L that form a 2D-grid. CP V, 2D-[(AgL)(NO3)]n, presents parallel 1D-folded S-shaped [AgL]n+ chains linked by strong argentophilic Ag···Ag interactions, forming a 2D-scaffolding. CP VIII, 1D-[(Ag2L3)(Cr2O7)]n, shows 1D-zigzag [{Ag(η2-μ2,η-μ,μ-L)}2]n2n+ chains accompanied by Cr2O72- counteranions. The adsorption isotherms of H2S gas by these new CPs were examined and compared to those of related CPs [(Ag2Br2)L]n (II), [(AgCN)4L]n (IV), [(Ag2L)(CF3SO3)2]n (VI), and [(Ag2L)(NO3)(ClO4)]n (VII). Among the tested polymers, the 3D-CP IV featuring cyanide anions exhibits the highest adsorption capacity of the CPs studied in this work. In order to determine the reason for this marked difference, density functional theory (DFT) computations were used. All in all, it turns out that the electrostatic interactions (CN-···H-SH) are significantly stronger than the O-···H-SH ones. This investigation provides a valuable conceptual tool for other designs of CPs and MOFs having the purpose of capturing toxic gases.
Collapse
Affiliation(s)
- Susan Soleymani-Babadi
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Behrang Salahshournia
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Environmental Engineering Laboratory, Faculty of Engineering, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Azizolla Beheshti
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Maryam Bahrani-Pour
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Hassan Arefi-Nasab
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic, Tehran 15875-4413, Iran
| | - Peter Mayer
- MU München Department Chemie, Butenandtstr 5-13, München (D)81377, Germany
| | - Daniel Fortin
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Hubert Cabana
- Environmental Engineering Laboratory, Faculty of Engineering, University of Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
4
|
Aragoni M, Arca M, Caltagirone C, Castellano C, Demartin F, Jones PG, Pivetta T, Podda E, Lippolis V, Murgia S, Picci G. Role of the Solvent in the Reactivity of Bis-4-imidazoline-2-selone Derivatives toward I 2: An Experimental and Theoretical Approach. J Org Chem 2022; 87:15448-15465. [DOI: 10.1021/acs.joc.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- M.Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Carlo Castellano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133Milano, Italy
| | - Francesco Demartin
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133Milano, Italy
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig, Hagenring 30, D-38106Braunschweig, Germany
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Enrico Podda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
- Centro Servizi di Ateneo per la Ricerca-CeSAR, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Sergio Murgia
- Dipartimento di Scienze della Vita e dell’ambiente, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari, Italy
| |
Collapse
|
5
|
Deb M, Hassan N, Chowdhury D, Sanfui MH, Roy S, Bhattacharjee C, Majumdar S, Chattopadhyay PK, Singha NR. Nontraditional Redox Active Aliphatic Luminescent Polymer for Ratiometric pH Sensing and Sensing-Removal-Reduction of Cu(II): Strategic Optimization of Composition. Macromol Rapid Commun 2022; 43:e2200317. [PMID: 35798327 DOI: 10.1002/marc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Here, redox active aliphatic luminescent polymers (ALPs) are synthesized via polymerization of N,N-dimethyl-2-propenamide (DMPA) and 2-methyl-2-propenoic acid (MPA). The structures and properties of the optimum ALP3, ALP3-aggregate and Cu(I)-ALP3, ratiometric pH sensing, redox activity, aggregation enhanced emission (AEE), Stokes shift, and oxygen-donor selective coordination-reduction of Cu(II) to Cu(I) are explored via spectroscopic, microscopic, density functional theory-reduced density gradient (DFT-RDG), fluorescence quenching, adsorption isotherm-thermodynamics, and electrochemical methods. The intense blue and green fluorescence of ALP3 emerges at pH = 7.0 and 9.0, respectively, due to alteration of fluorophores from -C(═O)N(CH3 )2 / -C(═O)OH to -C(O- )═N+ (CH3 )2 / -C(═O)O- , inferred from binding energies at 401.32 eV (-C(O- )═N+ (CH3 )2 ) and 533.08 eV (-C(═O)O- ), significant red shifting in absorption and emission spectra, and peak at 2154 cm-1 . The n-π* communications in ALP3-aggregate, hydrogen bondings within 2.34-2.93 Å (intramolecular) in ALP3 and within 1.66-2.89 Å (intermolecular) in ALP3-aggregate, respectively, contribute significantly in fluorescence, confirmed from NMR titration, ratiometric pH sensing, AEE, excitation dependent emission, and Stokes shift and DFT-RDG analyses. For ALP3, Stokes shift, excellent limit of detection, adsorption capacity, and redox potentials are 13561 cm-1 /1.68 eV, 0.137 ppb, 122.93 mg g-1 , and 0.33/-1.04 V at pH 7.0, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
6
|
Finko AV, Sokolov AI, Guk DA, Tafeenko VA, Moiseeva AA, Skvortsov DA, Stomakhin AA, Beloglazkin AA, Borisov RS, Pergushov VI, Melnikov MY, Zyk NV, Majouga AG, Beloglazkina EK. Copper coordination compounds with (5 Z,5 Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4 H-imidazol-4-ones. Comparison with sulfur analogue. RSC Adv 2022; 12:7133-7148. [PMID: 35424664 PMCID: PMC8982280 DOI: 10.1039/d1ra08995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
A series of new organic ligands (5Z,5Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-ones (L) consisting of two 5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-one units linked with polymethylene chains of various lengths (n = 2-10, where n is the number of CH2 units) have been synthesized. The reactions of these ligands with CuCl2·2H2O and CuClO4·6H2O gave Cu2+ or Cu1+ containing mono- and binuclear complexes with Cu2LCl x (x = 2-4) or CuL(ClO4) y (y = 1, 2) composition. It was shown that the agents reducing Cu2+ to Cu1+ in the course of complex formation can be both a ligand and an organic solvent in which the reaction is carried out. This fundamentally distinguishes the selenium-containing ligands L from their previously described sulfur analogs, which by themselves are not capable of reducing Cu2+ during complexation under the same conditions. A higher cytotoxicity and reasonable selectivity to cancer cell lines for synthesized complexes of selenium-containing ligands was shown; unlike sulfur analogs, ligands L themselves demonstrate a high cytotoxicity, comparable in some cases to the toxicity of copper-containing complexes.
Collapse
Affiliation(s)
- Alexander V Finko
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Anatolii I Sokolov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Dmitry A Guk
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Victor A Tafeenko
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Anna A Moiseeva
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Dmitry A Skvortsov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Higher School of Economics Myasnitskaya 13 Moscow 101000 Russia
| | - Andrei A Stomakhin
- Engelhardt Institute of Molecular Biology RAS Vavilova 32 Moscow 119991 Russia
| | - Andrei A Beloglazkin
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Roman S Borisov
- Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Vladimir I Pergushov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Mikhail Ya Melnikov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Nikolay V Zyk
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Alexander G Majouga
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,National University of Science and Technology Leninskii pr., 4 Moscow 119049 Russia.,Mendeleev University of Chemical Technology Miusskaya pl. 9 Moscow 125047 Russia
| | - Elena K Beloglazkina
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| |
Collapse
|
7
|
Saab M, Nelson DJ, Leech MC, Lam K, Nolan SP, Nahra F, Van Hecke K. Reactions of N-heterocyclic carbene-based chalcogenoureas with halogens: a diverse range of outcomes. Dalton Trans 2022; 51:3721-3733. [PMID: 35169826 DOI: 10.1039/d2dt00010e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the reactions of chalcogenoureas derived from N-heterocyclic carbenes, referred to here as [E(NHC)], with halogens. Depending on the structure of the chalcogenourea and the identity of the halogen, a diverse range of reactivity was observed and a corresponding range of structures was obtained. Cyclic voltammetry was carried out to characterise the oxidation and reduction potentials of these [E(NHC)] species; selenoureas were found to be easier to oxidise than the corresponding thioureas. In some cases, a correlation was found between the oxidation potential of these compounds and the electronic properties of the corresponding NHC. The reactivity of these chalcogenoureas with different halogenating reagents (Br2, SO2Cl2, I2) was then investigated, and products were characterised using NMR spectroscopy and single-crystal X-ray diffraction. X-ray analyses elucidated the solid-state coordination types of the obtained products, showing that a variety of possible adducts can be obtained. In some cases, we were able to extrapolate a structure/activity correlation to explain the observed trends in reactivity and oxidation potentials.
Collapse
Affiliation(s)
- Marina Saab
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium.
| | - David J Nelson
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, UK
| | - Matthew C Leech
- School of Science, University of Greenwich, Chatham Maritime ME4 4TB, UK
| | - Kevin Lam
- School of Science, University of Greenwich, Chatham Maritime ME4 4TB, UK
| | - Steven P Nolan
- Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Fady Nahra
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium. .,VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium.
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Chalana A, Kumar Rai R, Karri R, Kumar Jha K, Kumar B, Roy G. Interplay of the intermolecular and intramolecular interactions in stabilizing the thione-based copper(I) complexes and their significance in protecting the biomolecules against metal-mediated oxidative damage. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Adinarayana M, Prabusankar G. Antimony(III) Halide-Assisted Stereospecific Coordination of Thione. Chem Asian J 2021; 16:1767-1772. [PMID: 33949120 DOI: 10.1002/asia.202100325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Indexed: 01/18/2023]
Abstract
The antimony halide-aided stereospecific coordination of a cyclic thiourea-type of ligand is observed for the first time. The antimony(III) imidazole thione complexes syn-[(L1 )SbCl3 ] (syn-1) and anti-[(L1 )SbBr3 ] (anti-2) have been synthesized in very good yield by the reaction between the spatially defined steric impact ligand [(IPaul)S] (L1 ) ([(IPaul)S]=1,3-bis(2,4-methyl-6-diphenyl phenyl)imidazole thione) and corresponding antimony halide. The stereoselective formation of complexes syn-1 and anti-2 has been confirmed by both NMR and single-crystal X-ray diffraction studies. Interestingly the stereospecific nature of syn-1 and anti-2 remains intact in solution. Furthermore, the thermal stability of antimony(III) imidazole thione complexes were examined by TGA analysis.
Collapse
Affiliation(s)
- Mannem Adinarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, Telangana, 502285, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
10
|
Beerhues J, Neubrand M, Sobottka S, Neuman NI, Aberhan H, Chandra S, Sarkar B. Directed Design of a Au I Complex with a Reduced Mesoionic Carbene Radical Ligand: Insights from 1,2,3-Triazolylidene Selenium Adducts and Extensive Electrochemical Investigations. Chemistry 2021; 27:6557-6568. [PMID: 33502818 PMCID: PMC8252451 DOI: 10.1002/chem.202100105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/07/2022]
Abstract
Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.
Collapse
Affiliation(s)
- Julia Beerhues
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Maren Neubrand
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sebastian Sobottka
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Nicolás I. Neuman
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Hannes Aberhan
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| |
Collapse
|
11
|
Adinarayana M, Nandeshwar M, Srinivas K, Prabusankar G. Super bulky Bismuth(III) imidazole selones. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Beheshti A, Nozarian K, Mousavifard ES, Abrahams CT, Mayer P, Gajda R, Woźniak K, Motamedi H. Design and construction of the imidazole-2-thione-based copper(I) complexes by varying the co-anion and synthesis conditions and verifying their antimicrobial activity. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Nahhas DR, Corrigan JF. Synthesis and characterization of ITr-protected group 11 metal trimethylsilylchalcogenolates. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work describes the synthesis of group 11 metal trimethylsilylchalcogenolate complexes [(ITr)M-ESiMe3] stabilized by the large NHC ligand bis-1,3-tritylimidazole-2-ylidene (ITr). The thiolates and selenolates of Cu, Ag, and Au are accessed from either [(ITr)MOAc] (M = Cu, Ag) and E(SiMe3)2 or [(ITr)AuCl] and Li[ESiMe3] (E = S, Se). All complexes were characterized spectroscopically and, for the copper coordination compounds, via single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Dickron R. Nahhas
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada; Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada; Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John F. Corrigan
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada; Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada; Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
14
|
Wang XQ, Tang J, Ma X, Wu D, Yang J. A novel copper( i) metal–organic framework as a highly efficient and ultrasensitive electrochemical platform for detection of Hg( ii) ions in aqueous solution. CrystEngComm 2021. [DOI: 10.1039/d1ce00197c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel copper(i) metal–organic framework was constructed and used to modify a glassy carbon electrode, and exhibits excellent electrochemical sensing of Hg(ii) ions.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jing Tang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xuehui Ma
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Dan Wu
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252000
- China
| |
Collapse
|
15
|
Tuning the structure of mercury (II) complexes as antibacterial agents by varying the halogen atoms (Cl and Br) and extending the spacer length of the imidazole-2-thione ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Nandeshwar M, Adinarayana M, Srinivas K, Velappan K, Prabusankar G. Rare antimony(III) imidazole selone complexes: steric controlled structural and bonding aspects. Dalton Trans 2020; 49:17331-17340. [PMID: 33206066 DOI: 10.1039/d0dt02999h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel antimony(iii) imidazole selone complexes in a super crowded environment are reported for the first time. The super bulky selone antimony complexes, [{IPr*Se}(SbCl3)2] (1) and [{IPr*Se}(SbBr3)2] (2), were isolated from the reactions between IPr*Se (IPr*Se = [1,3-bis(2,6-diphenylmethylphenyl)imidazole selone]) and suitable antimony(iii) halides. 1 and 2 are dinuclear complexes with a Sb : Se ratio of 1 : 0.5 with an unusual coordination mode of selone. The molecules 1 and 2 consist of both Menshutkin-type Sbπaryl interactions and a Sb-Se coordination bond. However, the reaction between antimony(iii) halides and [(IPaul)Se] ([(IPaul)Se] = [1,3-bis(2,4-methyl-6-diphenyl phenyl)imidazole selone]) with a spatially defined steric impact gave the dinuclear complex [{(IPaul)Se}(SbCl3)]2 (3) and the mononuclear complex [{(IPaul)Se}(SbBr3)] (4) without Menshutkin-type interactions. The Sb : Se ratio in 3 and 4 is 1 : 1. Interestingly, the Menshutkin-type interaction was absent in 3 and 4 due to the efficient coordinating ability of the ligand [(IPaul)Se] with the Sb(iii) center compared to that of the super bulky ligand IPr*Se. The thermal property of these antimony selone complexes was also investigated. Density functional theory (DFT) calculations were carried out on the model systems [L(SbCl3)2] (1A), [L(SbCl3)] (1B), [L'(SbCl3)2] (1C), and [L'(SbCl3)] (1D), where L = [1,3-bis(2,6-diisopropyl-4-methyl phenyl)imidazole selone] and L' = [1,3-bis(phenyl)imidazole selone], to understand the nature of orbitals and bonding situations. The computed metrical parameters of 1A are in good agreement with the experimental values. Natural population analysis of the model system reveals that the natural charge and total population of antimony(iii) are comparable. The unequal interaction between selenium and antimony obtained using Wiberg bond indices (WBIs) is fully consistent with the findings of the single-crystal X-ray studies.
Collapse
Affiliation(s)
- Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502 285, India.
| | | | | | | | | |
Collapse
|
17
|
Ferrocenylated Chalcogen (Se and Te)-containing N-heterocyclic carbenes: Selenones, silver and palladium complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Plaza‐Lozano D, Morales‐Martínez D, González FJ, Olguín J. Homoleptic Mononuclear Tris‐Chelate Complexes of Fe
II
, Co
II
, Ni
II
, and Zn
II
Based on a Redox‐Active Imidazolyl‐2‐thione Ligand: Structural and Electrochemical Correlation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Diego Plaza‐Lozano
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| | - Daniel Morales‐Martínez
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| | - Felipe J. González
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| | - Juan Olguín
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| |
Collapse
|
19
|
Beheshti A, Mousavifard ES, Zargar B, Mayer P, Rezatofighi SE. Synthesis and dye adsorption studies of the {dibromo(1,1′-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione)dicopper( i)} n polymer and its conversion to CuO nanospheres for photocatalytic and antibacterial applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj01721c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new copper polymer was used as a dye adsorbent and CuO precursor. The CuO nanospheres showed good performances for photocatalytic and antibacterial applications.
Collapse
Affiliation(s)
- Azizolla Beheshti
- Department of Chemistry
- Faculty of Sciences
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | | | - Behrooz Zargar
- Department of Chemistry
- Faculty of Sciences
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Peter Mayer
- LMU München Department Chemie
- Butenandtstrasse
- München
- Germany
| | | |
Collapse
|
20
|
The influence of co-anions on the structural dimension of mercury (II) coordination polymers: Synthesis, crystal structure, spectroscopy and biological activity investigations. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Quinlivan PJ, Chaijan MR, Palmer JH, Shlian DG, Parkin G. Coordination of 1-methyl-1,3-dihydro-2 H-benzimidazole-2-selone to zinc and cadmium: Monotonic and non-monotonic bond length variations for [H(sebenzim Me)] 2MCl 2 complexes (M = Zn, Cd, Hg). Polyhedron 2019; 164:185-194. [PMID: 31333278 PMCID: PMC6644719 DOI: 10.1016/j.poly.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone, H(sebenzimMe), towards the zinc and cadmium halides, MX2 (M = Zn, Cd; X = Cl, Br, I), afford the adducts, [H(sebenzimMe)]2MX2, which have been structurally characterized by X-ray diffraction. The halide ligands of each of these complexes participate in hydrogen bonding interactions with the imidazole N-H moieties, although the nature of the interactions depends on the halide. Specifically, the chloride and bromide derivatives, [H(sebenzimMe)]2ZnX2 and [H(sebenzimMe)]2CdX2 (X = Cl, Br), exhibit two intramolecular N-H•••X interactions, whereas the iodide derivatives, [H(sebenzimMe)]2ZnI2 and [H(sebenzimMe)]2CdI2, exhibit only one intramolecular N-H•••I interaction. Comparison of the M-Se and M-Cl bond lengths of the chloride series, [H(sebenzimMe)]2MCl2 (M = Zn, Cd, Hg), indicates that while the average M-Cl bond lengths progressively increase as the metal becomes heavier, the variation in M-Se bond length exhibits a non-monotonic trend, with the Cd-Se bond being the longest. These different trends provide an interesting subtlety concerned with use of covalent radii in predicting bond length differences. In addition to tetrahedral [H(sebenzimMe)]2CdCl2, [H(sebenzimMe)]3,CdCl2•[H(sebenzim)Me]4CdCl2, which features both five-coordinate and six-coordinate coordinate centers, has also been structurally characterized. Finally, the reaction between CdI2 and H(sebenzimMe) at elevated temperatures affords the 1-methylbenzimidazole complex, [H(sebenzimMe)]-[H(benzimMe)]CdI2, a transformation that is associated with cleavage of the C-Se bond.
Collapse
Affiliation(s)
| | | | - Joshua H Palmer
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
22
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Yadav S, Deka R, Singh HB. Recent Developments in the Chemistry of NHC-based Selones: Syntheses, Applications and Reactivity. CHEM LETT 2019. [DOI: 10.1246/cl.180748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sangeeta Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
24
|
Karri R, Chalana A, Das R, Rai RK, Roy G. Cytoprotective effects of imidazole-based [S 1] and [S 2]-donor ligands against mercury toxicity: a bioinorganic approach. Metallomics 2019; 11:213-225. [PMID: 30488926 DOI: 10.1039/c8mt00237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the coordination behaviour of an imidazole-based [S1]-donor ligand, 1,3-dimethyl-imidazole-2(3H)-thione (L1), and [S2]-donor ligand, 3,3'-methylenebis(1-methyl-imidazole-2(3H)-thione) (L2) or 4,4'-(3,3'-methylenebis-(2-thioxo-2,3-dihydro-imidazole-3,1-diyl))dibutanoic acid (L3), with HgX2 (X = Cl, Br or I) in solution and the solid state. NMR, UV-Vis spectroscopic, and single crystal X-ray studies demonstrated that L1 or L2 coordinated rapidly and reversibly to the mercury center of HgX2 through the thione moiety. Treatment of L2 with HgCl2 or HgBr2 afforded 16-membered metallacycle k1-(L2)2Hg2Cl4 or k1-(L2)2Hg2Br4 where two Cl or Br atoms are located inside the ring. In contrast, treatment of L2 with HgI2 afforded a chain-like structure of k1-[L2Hgl2]n, possibly due to the large size of the iodine atom. Interestingly, [S1] and [S2]-donor ligands (L1, L2, and L3) showed an excellent efficacy to protect liver cells against HgCl2 induced toxicity and the strength of their efficacy is in the order of L3 > L2 > L1. 30% decrease of ROS production was observed when liver cells were co-treated with HgCl2 and L1 in comparison to those cells treated with HgCl2 only. In contrast, 45% and 60% decrease of ROS production was observed in the case of cells co-treated with HgCl2 and thiones L2 and L3, respectively, indicating that [S2]-donor ligands L2 and L3 have better cytoprotective effects against oxidative stress induced by HgCl2 than [S1]-donor ligand L1. Water-soluble ligand L3 with N-(CH2)3CO2H substituents showed a better cytoprotective effect against HgCl2 toxicity than L2 in liver cells.
Collapse
Affiliation(s)
- Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | | | | | | | | |
Collapse
|
25
|
Aragoni MC, Arca M, Blake AJ, Cadoni E, Copolovici LO, Isaia F, Lippolis V, Murgia S, Pop AM, Silvestru C, Tidey JP, Varga RA. Reaction of imidazoline-2-selone derivatives with mesityltellurenyl iodide: a unique example of a 3c-4e Se→Te←Se three-body system embedding a tellurenyl cation. NEW J CHEM 2019. [DOI: 10.1039/c9nj01593k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2-Bis(3-methyl-4-imidazolin-2-selone)ethane was used to stabilize the first example of an authentic mesityltellurenyl cation, [MesTe]+, as a charge transfer adduct featuring a 3c-4e Se→Te←Se three-body system.
Collapse
Affiliation(s)
- M. Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (Cagliari)
- Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (Cagliari)
- Italy
| | | | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (Cagliari)
- Italy
| | - Lucian O. Copolovici
- Faculty of Food Engineering
- Tourism and Environmental Protection, and Institute of Technical and Natural Sciences Research-Development-Innovation
- “Aurel Vlaicu” University
- Arad
- Romania
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (Cagliari)
- Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (Cagliari)
- Italy
| | - Sergio Murgia
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (Cagliari)
- Italy
| | - Alexandra M. Pop
- Department of Chemistry
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC)
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- 400028 Cluj-Napoca
| | - Cristian Silvestru
- Department of Chemistry
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC)
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- 400028 Cluj-Napoca
| | | | - Richard A. Varga
- Department of Chemistry
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC)
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- 400028 Cluj-Napoca
| |
Collapse
|
26
|
Mao S, Han X, Li C, Xu Y, Shen K, Shi X, Wu H. Cu(I) complexes regulated by N-heterocyclic ligands: Syntheses, structures, fluorescence and electrochemical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:408-414. [PMID: 29894953 DOI: 10.1016/j.saa.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Three mononuclear Cu(I) complexes, namely, [Cu(2-PBO)(PPh3)2]·ClO4·2CH2Cl2 (1), [Cu(3-PBO)(PPh3)2(ClO4)]·CH2Cl2 (2) and [Cu(PBM)(PPh3)2]·ClO4 (3) (2-PBO = 2-(2'-Pyridyl)benzoxazole, 3-PBO = 2-(3'-Pyridyl)benzoxazole, PBM = 2-(2'-Pyridyl)benzimidazole, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses, IR, 1H NMR, 13C NMR, X-ray single crystal diffraction and thermal analysis. Photoluminescent investigation shows that complexes 1-3 exhibit distinct tunable light green (512 nm)-to-yellow (557 nm) photoluminescence by varying the N-heterocyclic ligands. Three complexes show intense 2-PBO-based yellow, 3-PBO-based light green and intense PBM-based bright green luminescence upon irradiation with a standard UV lamp (λex = 254 nm) at room temperature. Moreover, the electrochemical properties of 1-3 have been investigated by cyclic voltammetry. The results suggest the frontier molecular orbits and the HOMO-LUMO energy gaps of these cuprous complexes are effectively adjusted through the introduction of different N-heterocyclic ligands, thus achieving the selective luminescence of the cuprous complexes.
Collapse
Affiliation(s)
- Shanshan Mao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xintong Han
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China
| | - Chuang Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yuling Xu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China
| | - Kesheng Shen
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xinkui Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's Republic of China.
| |
Collapse
|
27
|
Barros OSDR, Silva FR, Nunes VL. Copper(I) selenophene-2-carboxylate (CuSC) promoted C–S cross-coupling reaction of thiols with aryl iodides. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1519566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Ritch JS. Synthesis and coordination chemistry of cyclic seleno- and telluroureas. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Chalcogenated derivatives of N-heterocyclic carbene ligands have received increasing attention due to their diverse chemical reactivity and potential applications in fields such as medicine and materials chemistry. This chapter summarizes the synthetic methods for the preparation of cyclic heavy chalcogenoureas featuring heterocyclic cores and explores their diverse coordination chemistry with p- and d-block metals.
Collapse
Affiliation(s)
- Jamie S. Ritch
- Department of Chemistry , The University of Winnipeg , 515 Portage Avenue , Winnipeg , Manitoba R3B 2E9 , Canada
| |
Collapse
|
29
|
Xu Y, Mao S, Shen K, Shi X, Wu H, Tang X. Different structures of two Cu(I) complexes constructed by bridging 2,2-(1,4-butanediyl)bis-1,3-benzoxazole ligand: Syntheses, structures and properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Srinivas K, Prabusankar G. Role of C, S, Se and P donor ligands in copper(i) mediated C–N and C–Si bond formation reactions. RSC Adv 2018; 8:32269-32282. [PMID: 35547503 PMCID: PMC9086264 DOI: 10.1039/c8ra06057f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
The first comparative study of C, S, Se and P donor ligands-supported copper(i) complexes for C–N and C–Si bond formation reactions are described. The syntheses and characterization of eight mononuclear copper(i) chalcogenone complexes, two polynuclear copper(i) chalcogenone complexes and one tetranuclear copper(i) phosphine complex are reported. All these new complexes were characterized by CHN analysis, FT-IR, UV-vis, multinuclear NMR and single crystal X-ray diffraction techniques. The single crystal X-ray structures of these complexes depict the existence of a wide range of coordination environments for the copper(i) center. This is the first comparative study of metal–phosphine, metal–NHC and metal–imidazolin-2-chalcogenones in C–N and C–Si bond formation reactions. Among all the catalysts, mononuclear copper(i) thione, mononuclear copper(i) N-heterocyclic carbene and tetranuclear copper(i) phosphine are exceedingly active towards the synthesis of 1,2,3-triazoles as well as for the cross-dehydrogenative coupling of alkynes with silanes. The cross-dehydrogenative coupling of terminal alkynes with silanes represents the first report of a catalytic process mediated by metal–imidazolin-2-chalcogenones. The first comparative study of C, S, Se and P donor ligands-supported copper(i) complexes for C–N and C–Si bond formation reactions.![]()
Collapse
Affiliation(s)
- Katam Srinivas
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India-502 285
| | - Ganesan Prabusankar
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India-502 285
| |
Collapse
|
31
|
Perras JH, Mezibroski SMJ, Wiebe MA, Ritch JS. Diverse silver(i) coordination chemistry with cyclic selenourea ligands. Dalton Trans 2018; 47:1471-1478. [DOI: 10.1039/c7dt04243d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reactions of cyclic selenoureas with silver(i) salts yield new coordination complexes with sterically-controlled solid state aggregation.
Collapse
Affiliation(s)
| | | | | | - Jamie S. Ritch
- Department of Chemistry
- The University of Winnipeg
- Winnipeg
- Canada
| |
Collapse
|
32
|
Nahra F, Van Hecke K, Kennedy AR, Nelson DJ. Coinage metal complexes of selenoureas derived from N-heterocyclic carbenes. Dalton Trans 2018; 47:10671-10684. [DOI: 10.1039/c8dt01506f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The coordination chemistry of selenoureas derived from N-heterocyclic carbenes with copper and silver is explored, and compared to previous work with gold.
Collapse
Affiliation(s)
- Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Alan R. Kennedy
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - David J. Nelson
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
33
|
Heterobimetallic acetylide bridged Cu(I)/Ru(II)-halide/pseudohalide hybrid complexes: Synthesis, structural characterization, luminescence and electrochemical studies. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.10.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Slivarichova M, Correa da Costa R, Nunn J, Ahmad R, Haddow MF, Sparkes HA, Gray T, Owen GR. Two synthetic routes to bis(1-methyl-imidazole-2-thione)methane and bis(1-benzyl-imidazole-2-thione)methane complexes including sulfur atom insertion into copper−NHC bonds. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Karri R, Banerjee M, Chalana A, Jha KK, Roy G. Activation of the Hg–C Bond of Methylmercury by [S2]-Donor Ligands. Inorg Chem 2017; 56:12102-12115. [DOI: 10.1021/acs.inorgchem.7b01048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ramesh Karri
- Department of Chemistry, School of Natural
Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mainak Banerjee
- Department of Chemistry, School of Natural
Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Ashish Chalana
- Department of Chemistry, School of Natural
Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kunal Kumar Jha
- Department of Chemistry, School of Natural
Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, School of Natural
Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
36
|
Lolage SR, Pawal SB, Chavan SS. Heterobimetallic Cu(I)/Ru(II) Acetylide Bridged Hybrid Complexes Containing Coordination and Organometallic Sites. ChemistrySelect 2017. [DOI: 10.1002/slct.201701764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sanjay R. Lolage
- Synthetic Inorganic Chemistry Laboratory; Department of Chemistry; Shivaji University; Kolhapur, (MS 416 004 India
| | - Sandip B. Pawal
- Synthetic Inorganic Chemistry Laboratory; Department of Chemistry; Shivaji University; Kolhapur, (MS 416 004 India
| | - Sanjay S. Chavan
- Synthetic Inorganic Chemistry Laboratory; Department of Chemistry; Shivaji University; Kolhapur, (MS 416 004 India
| |
Collapse
|
37
|
Rani V, Singh HB, Butcher RJ. Bis(selone) Complexes of Palladium(II), Platinum(II), and Gold(III): Synthesis and Structural Studies. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Varsha Rani
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| | - Harkesh B. Singh
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| | - Ray J. Butcher
- Department of Chemistry; Howard University; 525 College Street NW 20059 Washington DC USA
| |
Collapse
|
38
|
Siek S, Dixon NA, Papish ET. Electrochemical reduction of Ttz copper(II) complexes in the presence and absence of protons: Processes relevant to enzymatic nitrite reduction (TtzR,R′= tris(3-R, 5-R′-1, 2, 4-triazolyl)borate). Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Katam S, Ganesan P. Large CuI8 chalcogenone cubic cages with non-interacting counter ions. Dalton Trans 2017; 46:16615-16622. [DOI: 10.1039/c7dt03796a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synthesis and applications of two mega size octanuclear copper(i) chalcogenone cages have been reported.
Collapse
Affiliation(s)
- Srinivas Katam
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Kandi, Sangareddy
- India
| | - Prabusankar Ganesan
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Kandi, Sangareddy
- India
| |
Collapse
|
40
|
Wałęsa-Chorab M, Banasz R, Marcinkowski D, Kubicki M, Patroniak V. Electrochromism and electrochemical properties of complexes of transition metal ions with benzimidazole-based ligand. RSC Adv 2017. [DOI: 10.1039/c7ra10451k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Six complexes of transition metal ions have been synthesized and characterized. Complexes showed optical properties dependent on redox state of both metal ions and ligand molecule and can be used for the construction of multielectrochromic devices.
Collapse
Affiliation(s)
| | - Radosław Banasz
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | | | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Violetta Patroniak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| |
Collapse
|