1
|
Khairbek AA, Badawi MAAH, Alzahrani AY, Thomas R. Assessing the catalytic potential of novel halogen substituted carbene NHC (F, Cl, Br, I) catalysts in [3 + 2] cycloaddition reactions: A computational investigation. Dalton Trans 2024; 53:16635-16646. [PMID: 39327943 DOI: 10.1039/d4dt02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
This study investigated the catalytic behavior of NHC-X ligands (X = F, Cl, Br, I) in cycloaddition reactions, focusing on both mononuclear and binuclear pathways. Using NCI (noncovalent interaction), RDG (reduced density gradient), ELF (electron localization function), and LOL (localized orbital locus) computational analyses, the electronic interactions and stability of the ligands were examined. The results showed that NHC-Cl exhibited the least steric hindrance and strongest transition state stabilization, making it the most efficient catalyst. NHC-F also demonstrated strong stabilization, particularly in the binuclear pathway. In contrast, NHC-Br showed moderate efficiency, whereas NHC-I was the least effective owing to higher Gibbs free energy values and greater steric hindrance, especially in polar solvents such as water and acetonitrile. This study emphasizes the crucial role of solvent effects and thermodynamic factors in influencing the catalytic efficiency. These findings provide a framework for optimizing NHC-based catalysts for chemical transformations.
Collapse
Affiliation(s)
- Ali A Khairbek
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Chemistry, Faculty of Science, Tishreen University, Latakia, Syrian Arab Republic.
| | | | - Abdullah Y Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 23622, Saudi Arabia
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala-686101, India.
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala-686101, India
| |
Collapse
|
2
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
3
|
Moreth D, Hörner G, Müller VVL, Geyer L, Schatzschneider U. Isostructural Series of Ni(II), Pd(II), Pt(II), and Au(III) Azido Complexes with a N^C^N Pincer Ligand to Elucidate Trends in the iClick Reaction Kinetics and Structural Parameters of the Triazolato Products. Inorg Chem 2023; 62:16000-16012. [PMID: 37728290 DOI: 10.1021/acs.inorgchem.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An isoelectronic and isostructural series of cyclometalated azido complexes [M(N3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) based on the N^C^N pincer ligand 1,3-di(2-pyridyl)phenide (dpb) was characterized by X-ray diffraction analysis and investigated for reactivity in the iClick reaction with a wide range of internal and terminal alkynes by using 1H and 19F NMR spectroscopy. Reaction rate constants were found to increase with greater charge density in the order Ni(II) > Pd(II) > Pt(II) > Au(III). Terminal alkynes R-C≡C-R' with strongly electron-withdrawing groups R and R' exhibited faster kinetics than those with electron-donating substituents in the order CF3 > ketone > ester > H > phenyl ≫ amide, while R = CH3 resulted in complete loss of reactivity. Four symmetrical triazolato complexes [M(triazolatoCOOCH3,COOCH3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) as well as four nonsymmetrically substituted triazolato complexes [Pt(triazolatoR,R')(dpb)] originating from terminal and internal alkynes were shown by X-ray crystal structure analysis to exclusively feature N2-coordination of the five-membered ring ligand. However, the Pt(II) triazolato complexes exist as a mixture of N1- and N2-coordinated species in solution. Torsion angles between the mean planes of the N^C^N pincer and the triazolato ligand increase from a nearly coplanar to a perpendicular arrangement when going from Au(III)/Pt(II)/Pd(II) to Ni(II), while different substituents R and R' on the alkyne have no influence on the torsion angle and were rationalized by DFT calculations. Finally, a carbohydrate derivative obtained by glucuronic acid conjugation to methyl propiolate demonstrates the facile biofunctionalization of metal complexes via the iClick reaction.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerald Hörner
- Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lucia Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
4
|
Winter M, Ellwanger MA, Limberg N, Pérez-Bitrián A, Voßnacker P, Steinhauer S, Riedel S. Reactivity of [AuF 3 (SIMes)]: Pathway to Unprecedented Structural Motifs. Chemistry 2023; 29:e202301684. [PMID: 37340637 DOI: 10.1002/chem.202301684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
We report on a comprehensive reactivity study starting from [AuF3 (SIMes)] to synthesize different motifs of monomeric gold(III) fluorides. A plethora of different ligands has been introduced in a mono-substitution yielding trans-[AuF2 X(SIMes)] including alkynido, cyanido, azido, and a set of perfluoroalkoxido complexes. The latter were better accomplished via use of perfluorinated carbonyl-bearing molecules, which is unprecedented in gold chemistry. In case of the cyanide and azide, triple substitution gave rise to the corresponding [AuX3 (SIMes)] complexes. Comparison of the chemical shift of the carbene carbon atom in the 13 C{1 H} NMR spectrum, the calculated SIMes affinity and the Au-C bond length in the solid state with related literature-known complexes yields a classification of trans-influences for a variety of ligands attached to the gold center. Therein, the mixed fluorido perfluoroalkoxido complexes have a similar SIMes affinity to AuF3 with a very low Gibbs energy of formation when using the perfluoro carbonyl route.
Collapse
Affiliation(s)
- Marlon Winter
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Mathias A Ellwanger
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QR, Oxford, UK
| | - Niklas Limberg
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Alberto Pérez-Bitrián
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Patrick Voßnacker
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Simon Steinhauer
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
5
|
Zach T, Geyer F, Kiendl B, Mößeler J, Nguyen O, Schmidpeter T, Schuster P, Nagel C, Schatzschneider U. Electrospray Mass Spectrometry to Study Combinatorial iClick Reactions and Multiplexed Kinetics of [Ru(N 3)(N∧N)(terpy)]PF 6 with Alkynes of Different Steric and Electronic Demand. Inorg Chem 2023; 62:2982-2993. [PMID: 36745056 DOI: 10.1021/acs.inorgchem.2c03377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a combinatorial approach, a family of ruthenium(II) azido complexes [Ru(N3)(N∧N)(terpy)]PF6 with terpy = 2,2':6',2″-terpyridine and N∧N as a bidentate chelator derived from 2,2'-biypridine and its 4,4'-disubstituted derivatives, 2,2'-bipyrimidine, and 1,10-phenanthroline were reacted with different internal and terminal alkynes to give access to a total of 7 × 7 = 49 triazolato complexes in a room-temperature catalyst-free iClick reaction. The reactants were mixed in a repurposed high-performance liquid chromatography (HPLC) autosampler, and the reaction progress was monitored by direct injection into an electrospray mass spectrometer. The ratio of the peak intensities of [Ru(N3)(N∧N)(terpy)]+ and [Ru(triazolato)(N∧N)(terpy)]+ was converted to a colored heat map for facile visual inspection of the conversion ratio. By automated multiple injections of the reaction mixture in fixed time intervals and plotting peak intensities over reaction time, pseudo-first-order rate constants were easily determined. Finally, nonoverlapping isotope patterns of the azido starting materials and triazolato products enabled multiplexed parallel determination of rate constants for four different ruthenium(II) azido complexes from a single sample vial, thereby reducing experiment time by 75%.
Collapse
Affiliation(s)
- Tristan Zach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Florian Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Benjamin Kiendl
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Olivier Nguyen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Thomas Schmidpeter
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Patrick Schuster
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| |
Collapse
|
6
|
Li Y, Shen YH, Esper AM, Tidwell JR, Veige AS, Martin CD. Probing borafluorene B-C bond insertion with gold acetylide and azide. Dalton Trans 2023; 52:668-674. [PMID: 36537567 DOI: 10.1039/d2dt03672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reaction of Ph3PAuN3 with 9-Ph-9-borafluorene resulted in complexation of the azide to boron while a gold acetylide reacted with 9-Ph-9-borafluorene to insert the acetylide carbon to access a six-membered boracycle with an exocyclic double bond.
Collapse
Affiliation(s)
- Yijie Li
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | - Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - Alec M Esper
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - John R Tidwell
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| |
Collapse
|
7
|
Shen YH, Ghiviriga I, Abboud KA, Schanze KS, Veige AS. iClick synthesis of network metallopolymers. Dalton Trans 2022; 51:18520-18527. [PMID: 36444537 DOI: 10.1039/d2dt01624a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Described is an approach to preparing the first iClick network metallopolymers with porous properties. Treating digoldazido complex 2-AuN3 with trigoldacetylide 3-AuPPh3 or 3-AuPEt3, trialkyne 3-H, tetragoldacetylide 4-AuPPh3, or tetraalkyne 4-H in CH2Cl2 affords five iClick network metallopolymers 5-AuPPh3, 5-AuPEt3, 5-H, 6-AuPPh3, and 6-H. Confirmation of the iClick network metallopolymers comes from FTIR, 13C solid-state cross-coupling magic angle spinning (CPMAS) NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nitrogen and CO2 sorption analysis. Employing model complexes 7-AuPPh3, 7-AuPEt3, 7-H, 8-AuPPh3, and 8-H provides structural insights due to the insolubility of iClick network metallopolymers.
Collapse
Affiliation(s)
- Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Khalil A Abboud
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Kirk S Schanze
- University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, TX 78249, USA
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
N-Heterocyclic Carbene Platinum-Butadiyne Click/iClick Complexes. Towards Blue-Violet Phosphorescence. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Nazarova AL, Zayat B, Fokin VV, Narayan SR. Electrochemical Studies of the Cycloaddition Activity of Bismuth(III) Acetylides Towards Organic Azides Under Copper(I)-Catalyzed Conditions. Front Chem 2022; 10:830237. [PMID: 36204144 PMCID: PMC9531323 DOI: 10.3389/fchem.2022.830237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
Time-dependent monitoring of the reactive intermediates provides valuable information about the mechanism of a synthetic transformation. However, the process frequently involves intermediates with short lifetimes that significantly challenge the accessibility of the desired kinetic data. We report in situ cyclic voltammetry (CV) and nuclear magnetic resonance (NMR) spectroscopy studies of the cycloaddition reaction of organobismuth(III) compounds with organic azides under the copper(I)-catalyzed conditions. A series of bismuth(III) acetylides carrying diphenyl sulfone scaffolds have been synthesized to study the underlying electronic and steric effects of the tethered moieties capable of transannular oxygen O···Bi interactions and para-functionality of the parent phenylacetylene backbones. While belonging to the family of copper-catalyzed azide-alkyne cycloaddition reactions, the reaction yielding 5-bismuth(III)-triazolide is the sole example of a complex catalytic transformation that features activity of bismuth(III) acetylides towards organic azides under copper(I)-catalyzed conditions. Stepwise continuous monitoring of the copper(I)/copper(0) redox activity of the copper(I) catalyst by cyclic voltammetry provided novel insights into the complex catalytic cycle of the bismuth(III)-triazolide formation. From CV-derived kinetic data, reaction rate parameters of the bismuth(III) acetylides coordination to the copper(I) catalyst (KA) and equilibrium concentration of the copper species [cat]eq. are compared with the overall 5-bismuth(III)-triazolide formation rate constant kobs obtained by 1H-NMR kinetic analysis.
Collapse
Affiliation(s)
- Antonina L. Nazarova
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Billal Zayat
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
| | - Valery V. Fokin
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Valery V. Fokin, ; Sri R. Narayan,
| | - Sri R. Narayan
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Valery V. Fokin, ; Sri R. Narayan,
| |
Collapse
|
10
|
Shen YH, Esper AM, Ghiviriga I, Abboud KA, Schanze KS, Ehm C, Veige AS. SPAAC iClick: progress towards a bioorthogonal reaction in-corporating metal ions. Dalton Trans 2021; 50:12681-12691. [PMID: 34545891 DOI: 10.1039/d1dt02626g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Combining strain-promoted azide-alkyne cycloaddition (SPAAC) and inorganic click (iClick) reactivity provides access to metal 1,2,3-triazolates. Experimental and computational insights demonstrate that iClick reactivity of the tested metal azides (LM-N3, M = Au, W, Re, Ru and Pt) depends on the accessibility of the azide functionality rather than electronic effects imparted by the metal. SPAAC iClick reactivity with cyclooctyne is observed when the azide functionality is sterically unencumbered, e.g. [Au(N3)(PPh3)] (Au-N3), [W(η3-allyl)(N3)(bpy)(CO)2] (W-N3), and [Re(N3)(bpy)(CO)3] [bpy = 2,2'-bipyridine] (Re-N3). Increased steric bulk and/or preequilibria with high activation barriers prevent SPAAC iClick reactivity for the complexes [Ru(N3)(Tp)(PPh3)2] [Tp = tris(pyrazolyl)borate] (Ru-N3), [Pt(N3)(CH3)(PiPr3)2] [iPr = isopropyl] (Pt(II)-N3), and [Pt(N3)(CH3)3]4 ((PtN3)4). Based on these computational insights, the SPAAC iClick reactivity of [Pt(N3)(CH3)3(P(CH3)3)2] (Pt(IV)-N3) was successfully predicted.
Collapse
Affiliation(s)
- Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Alec M Esper
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Khalil A Abboud
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Kirk S Schanze
- University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, TX 78249, USA
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Peng K, Moreth D, Schatzschneider U. C^N^N Coordination Accelerates the iClick Reaction of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes and Enables Cycloaddition with Terminal Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
12
|
Petrovskii SK, Khistiaeva VV, Sizova AA, Sizov VV, Paderina AV, Koshevoy IO, Monakhov KY, Grachova EV. Hexavanadate-Organogold(I) Hybrid Compounds: Synthesis by the Azide-Alkyne Cycloaddition and Density Functional Theory Study of an Intriguing Electron Density Distribution. Inorg Chem 2020; 59:16122-16126. [PMID: 33103900 DOI: 10.1021/acs.inorgchem.0c02621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fully oxidized Lindqvist-type hexavanadate compounds decorated by phosphine-derivatized Au(I) moieties oriented in a transoid fashion (n-Bu4N)2[V6O13{(OCH2)3CCH2(N3C2C6H5)AuP(C6H4OMe)3}2] (POMNAu) and (n-Bu4N)2[V6O13{(OCH2)3CCH2OCH2(C2N3H)AuP(C6H4OMe)3}2] (POMCAu) have been prepared by azide-alkyne cycloaddition reactions and characterized by various techniques, including NMR, IR, and UV/vis spectroscopy and electrospray ionization mass spectrometry. Electronic structure calculations unveil the potential of these model hybrid junctions for application in controlled charge-transport experiments on substrate surfaces.
Collapse
Affiliation(s)
- Stanislav K Petrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Viktoria V Khistiaeva
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.,Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Anastasia A Sizova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vladimir V Sizov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra V Paderina
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Elena V Grachova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
13
|
Levchenko V, Øien-Ødegaard S, Wragg D, Tilset M. Crystal structure of (N^C) cyclo-metalated Au III diazide at 100 K. Acta Crystallogr E Crystallogr Commun 2020; 76:1725-1727. [PMID: 33209341 PMCID: PMC7643232 DOI: 10.1107/s2056989020012955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022]
Abstract
The title compound, an (N^C)-cyclo-metalated gold(III) diazide, namely, di-azido-[5-eth-oxy-carbonyl-2-(5-eth-oxy-carbonyl-pyridin-2-yl)phenyl-κ2 C 1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au-N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au-N(trans to C) of 2.067 (2) Å versus Au-N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.
Collapse
Affiliation(s)
- Volodymyr Levchenko
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| | - Sigurd Øien-Ødegaard
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| | - David Wragg
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| | - Mats Tilset
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| |
Collapse
|
14
|
Polynski MV, Sapova MD, Ananikov VP. Understanding the solubilization of Ca acetylide with a new computational model for ionic pairs. Chem Sci 2020; 11:13102-13112. [PMID: 34094492 PMCID: PMC8163204 DOI: 10.1039/d0sc04752j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 01/05/2023] Open
Abstract
The unique reactivity of the acetylenic unit in DMSO gives rise to ubiquitous synthetic methods. We theoretically consider CaC2 solubility and protolysis in DMSO and formulate a strategy for CaC2 activation in solution-phase chemical transformations. For this, we use a new strategy for the modeling of ionic compounds in strongly coordinating solvents combining Born-Oppenheimer molecular dynamics with the DFTB3-D3(BJ) Hamiltonian and static DFT computations at the PBE0-D3(BJ)/pob-TZVP-gCP level. We modeled the thermodynamics of CaC2 protolysis under ambient conditions, taking into account its known heterogeneity and considering three polymorphs of CaC2. We give a theoretical basis for the existence of the elusive intermediate HC[triple bond, length as m-dash]C-Ca-OH and show that CaC2 insolubility in DMSO is of thermodynamic nature. We confirm the unique role of water and specific properties of DMSO in CaC2 activation and explain how the activation is realized. The proposed strategy for the utilization of CaC2 in sustainable organic synthesis is outlined.
Collapse
Affiliation(s)
- Mikhail V Polynski
- Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Mariia D Sapova
- Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
| | - Valentine P Ananikov
- Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
15
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Deciphering the Mechanism of Silver Catalysis of “Click” Chemistry in Water by Combining Experimental and MEDT Studies. Catalysts 2020. [DOI: 10.3390/catal10090956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A combined experimental study and molecular electron density theory (MEDT) analysis was carried out to investigate the click of 1,2,3-triazole derivatives by Ag(I)-catalyzed azide-alkyne cycloaddition (AgAAC) reaction as well as its corresponding mechanistic pathway. Such a synthetic protocol leads to the regioselective formation of 1,4-disubstituted-1,2,3-triazoles in the presence of AgCl as catalyst and water as reaction solvent at room temperature and pressure. The MEDT was performed by applying Density Functional Theory (DFT) calculations at both B3LYP/6-31G(d,p) (LANL2DZ for Ag) and ωB97XD/6-311G(d,p) (LANL2DZ for Ag) levels with a view to decipher the observed regioselectivity in AgAAC reactions, and so to set out the number of silver(I) species and their roles in the formation of 1,4-disubstituted-1,2,3-triazoles. The comparison of the values of the energy barriers for the mono- and dinuclear Ag(I)-acetylide in the AgAAC reaction paths shows that the calculated energy barriers of dinuclear processes are smaller than those of the mononuclear one. The type of intramolecular interactions in the investigated AgAAC click chemistry reaction accounts for the regioselective formation of the 1,4-regiosisomeric triazole isomer. The ionic character of the starting compounds, namely Ag-acetylide, is revealed for the first time. This finding rules out any type of covalent interaction, involving the silver(I) complexes, along the reaction pathway. Electron localization function (ELF) topological analysis of the electronic structure of the stationary points reaffirmed the zw-type (zwitterionic-type) mechanism of the AgAAC reactions.
Collapse
|
17
|
Foley BJ, Bhuvanesh N, Zhou J, Ozerov OV. Combined Experimental and Computational Studies of the Mechanism of Dehydrogenative Borylation of Terminal Alkynes Catalyzed by PNP Complexes of Iridium. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan J. Foley
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | - Jia Zhou
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| |
Collapse
|
18
|
Zeman CJ, Shen YH, Heller JK, Abboud KA, Schanze KS, Veige AS. Excited-State Turn-On of Aurophilicity and Tunability of Relativistic Effects in a Series of Digold Triazolates Synthesized via iClick. J Am Chem Soc 2020; 142:8331-8341. [PMID: 32267156 DOI: 10.1021/jacs.0c01624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
iClick reactions between Au(I) acetylides PPh3Au-C≡CR, where R = nitrophenyl (PhNO2), phenyl (Ph), thiophene (Th), bithiophene (biTh), and dimethyl aniline (PhNMe2), and Au(I)-azide PPh3AuN3 provide digold complexes of the general formula R-1,5-bis-triphenylphosphinegold(I) 1,2,3-triazolate (Au2-R). Within the digold triazolate complexes the Au(I) atoms are held in close proximity but beyond the distance typically observed for aurophilic bonding. Though no bond exists in the ground state, time-dependent density functional theory interrogation of the complexes reveals excited states with significant aurophilic bonding. The series of complexes allows for tuning of the excited-state "turn-on" of aurophilicity, where ligand to metal charge transfer (LMCT) induces the aurophilic bonding. Complexes containing ligand-localized excited states, however, do not exhibit aurophilicity in the excited state. As a control experiment, a monogold complex was synthesized. The computed excited state of the monogold species exhibited LMCT to the gold ion as in the dinuclear cases, but without a partnering gold ion only a distinct N-Au-P bending occurs, revealing a potential mechanism for the excited-state turn-on of aurophilic bonding. Analysis of the steady-state electronic spectra indicates that LMCT states are achievable for compounds with sufficiently strong electron-donating ligands, and in digold complexes this is associated with enhanced fluorescence, suggestive of an aurophilic interaction.
Collapse
Affiliation(s)
- Charles J Zeman
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States.,Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Yu-Hsuan Shen
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Jessica K Heller
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Peng K, Einsele R, Irmler P, Winter RF, Schatzschneider U. The iClick Reaction of a BODIPY Platinum(II) Azido Complex with Electron-Poor Alkynes Provides Triazolate Complexes with Good 1O2 Sensitization Efficiency. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Richard Einsele
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Alexander JR, Packard MH, Hildebrandt AM, Ott AA, Topczewski JJ. Divergent Mechanisms of the Banert Cascade with Propargyl Azides. J Org Chem 2020; 85:3174-3181. [PMID: 31944764 DOI: 10.1021/acs.joc.9b03061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triazoles are privileged heterocycles for a variety of applications. The synthesis of 1H-triazoles can be accomplished by the Banert cascade from propargylic azides. Depending on the substrate and conditions, the Banert cascade can proceed by either a sigmatropic or prototropic mechanism. This report describes the first detailed kinetic analysis of the Banert cascade proceeding by both pathways including substituent effects and KIE. The analysis identified the inflection point in the divergent pathways, allowing future work to predict which Banert products are accessible.
Collapse
Affiliation(s)
- Juliana R Alexander
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Mary H Packard
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Alanna M Hildebrandt
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Amy A Ott
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Beto CC, Zeman CJ, Yang Y, Bullock JD, Holt ED, Kane AQ, Makal TA, Yang X, Ghiviriga I, Schanze KS, Veige AS. An Application Exploiting Aurophilic Bonding and iClick to Produce White Light Emitting Materials. Inorg Chem 2020; 59:1893-1904. [PMID: 31961144 DOI: 10.1021/acs.inorgchem.9b03195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paper focuses on exploiting aurophilic bonding to produce white light emitting materials. Inorganic Click (iClick) is employed to link two or four Au(I) metal ions through a triazolate bridge. Depending on the choice of phosphine ligand (PEt3 or PPh3), dinuclear Au2-FO or tetranuclear Au4-FO complexes can be controllably synthesized (FO = 2-(9,9-dioctylfluoreneyl-)). The iClick products Au2-FO and Au4-FO are characterized by combustion analysis and multinuclear NMR, TOCSY 1D, 1H-13C gHMBC, and 1H-13C gHSQC. In addition, the photophysical properties of Au2-FO and Au4-FO were examined in THF solution. Transient absorption spectroscopy was employed to elucidate the excited state features of the gold compounds. Solution processed OLEDs were fabricated and characterized, which gave white light electroluminescence with CIE coordinates (0.34, 0.36), as seen referenced to CIE standard illuminant D65 (0.31, 0.32). TDDFT computational analysis of Au2-FO and Au4-FO reveals the origin of light emission. In the case of Au4-FO, direct excitation leads to increased aurophilic bonding in the excited state, and as a result the emission profile is broadened to cover a larger region of the visible spectrum, thus giving white light emission. Designing molecules that can access or increase aurophilic bonding in the excited state provides another tool for fine-tuning the emission profiles of gold complexes.
Collapse
Affiliation(s)
- Christopher C Beto
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Charles J Zeman
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Yajing Yang
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - James D Bullock
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ethan D Holt
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Alexander Q Kane
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Tegan A Makal
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Xi Yang
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Kirk S Schanze
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| |
Collapse
|
22
|
Mansour AM, Shehab OR, Radacki K. Role of Sulfonate Appendage in the Protein Binding Affinity of Half-Sandwich Ruthenium(II)(η6
-p
-Cym) Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street, Giza 12613 Cairo Egypt
| | - Ola R. Shehab
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street, Giza 12613 Cairo Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie; Faculty of Science; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
23
|
Peng K, Mawamba V, Schulz E, Löhr M, Hagemann C, Schatzschneider U. iClick Reactions of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes: Metal-Dependent Preference for N1 vs N2 Triazolate Coordination and Kinetic Studies with 1H and 19F NMR Spectroscopy. Inorg Chem 2019; 58:11508-11521. [PMID: 31393709 DOI: 10.1021/acs.inorgchem.9b01304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two square-planar palladium(II) and platinum(II) azido complexes [M(N3)(L)] with L = N-phenyl-2-[1-(2-pyridinyl)ethylidene]hydrazine carbothioamide reacted with four different electron-poor alkynes R-C≡C-R' with R = R' = COOCH3, COOEt, COOCH2CH2OCH3 or R = CF3, R' = COOEt in a [3 + 2] cycloaddition "iClick" reaction. The resulting triazolate complexes [M(triazolateR,R')(L)] were isolated by simple precipitation and/or washing in high purity and good yield. Six out of the eight new compounds feature the triazolate ligand coordinated to the metal center via the N2 nitrogen atom, but fortuitous solubility properties allowed isolation of the N1 isomer in two cases from acetone. When the solvent was changed to DMSO, the N1 → N2 isomerization could be studied by NMR spectroscopy and took several days to complete. 19F NMR studies of the iClick reaction with F3C-C≡C-COOEt led to identification of a putative early linear intermediate in addition to the N1 and N2 isomers, however with the latter as the final product. Rate constants determined by 1H or 19F NMR spectroscopy increased in the order Pd > Pt and CF3/COOEt > COOR/COOR with R = CH3, Et, CH2CH2OCH3. The second-order rate constant k2 > 3.7 M-1 s-1 determined for the reaction of [Pd(N3)(L)] with F3C-C≡C-COOEt is the fastest observed for an iClick reaction so far and compares favorably with that of the most evolved strained alkynes reported for the SPAAC (strain-promoted azide-alkyne cycloaddition) to date. Selected title compounds were evaluated for their anticancer activity on the GaMG human glioblastoma brain cancer cell line and gave EC50 values in the low micromolar range (2-16 μM). The potency of the Pd(II) complexes increased with the chain length of the substituents in the 4- and 5-positions of the triazolate ligand.
Collapse
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Viviane Mawamba
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Ellina Schulz
- Universitätsklinikum Würzburg , Neurochirurgische Klinik und Poliklinik, Tumorbiologisches Labor , Josef-Schneider-Straße 11 , D-97080 Würzburg , Germany
| | - Mario Löhr
- Universitätsklinikum Würzburg , Neurochirurgische Klinik und Poliklinik, Tumorbiologisches Labor , Josef-Schneider-Straße 11 , D-97080 Würzburg , Germany
| | - Carsten Hagemann
- Universitätsklinikum Würzburg , Neurochirurgische Klinik und Poliklinik, Tumorbiologisches Labor , Josef-Schneider-Straße 11 , D-97080 Würzburg , Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| |
Collapse
|
24
|
Synthesis of ruthenium triazolato complexes by the [3 + 2] cycloaddition of a ruthenium azido complex with acetylacetylenes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Haiduc I. ReviewInverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 1. Five-membered and smaller rings. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1641702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Mahmoud AG, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide-alkyne cycloaddition reaction. Dalton Trans 2019; 48:1774-1785. [PMID: 30640328 DOI: 10.1039/c8dt04771e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of water soluble copper(ii) complexes, [Cu(κO1O2N-H2L1)(H2O)2]·2H2O (2), [Cu(κO-H3L1)2(H2O)4] (3), [Cu(κO-H4L2)2(H2O)4] (5) and [Cu(H2O)6]·2H2L3·2(CH3)2NCHO (7), were prepared by the reaction of Cu(NO3)2·3H2O with sodium (Z)-2-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)benzenesulfonate, [Na(μ4-1:2κO1,2κO2,3κO3,4κO4-H3L1)]n (1; for 2 and 3), sodium (Z)-3-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)-4-hydroxybenzene-sulfonate, [Na(μ-1κO1,2κO2-H4L2)]2 (4; for 5) or sodium (Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)naphthalene-1-sulfonate, [Na(μ-1κO1O2,2κO3-H2L3)(CH3OH)2]2 (6; for 7). Compounds 1-7 were fully characterized, also by single-crystal X-ray diffraction analysis, and applied as homogeneous catalysts for the azide-alkyne cycloaddition (AAC) reaction to afford 1,4-disubstituted 1,2,3-triazoles. A structure-catalytic activity relationship has been recognized for the first time on the basis of the occurrence of resonance- and charge-assisted hydrogen bond interactions (RAHB and CAHB), in charge and ligand binding modes, enabling the catalytic activity of the compounds to be ordered as follows: Cu(NO3)2≪7 (complex salt with RAHB and CAHB) < 3 (with RAHB and CAHB) < 5 (with RAHB) < 2 (neither RAHB nor CAHB). Complex 2, without such non-covalent interactions, was found to be the most efficient catalyst for the AAC reaction, affording up to 98% product yield after being placed for 15 min, at 125 °C, in a water/acetonitrile mixture under low power (10 W) MW irradiation.
Collapse
Affiliation(s)
- Abdallah G Mahmoud
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
27
|
Beto CC, Yang Y, Zeman CJ, Ghiviriga I, Schanze KS, Veige AS. Cu-Catalyzed Azide-Pt-Acetylide Cycloaddition: Progress toward a Conjugated Metallopolymer via iClick. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher C. Beto
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Yajing Yang
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Charles J. Zeman
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | | |
Collapse
|
28
|
Somasundaram V, Gunawardene PN, Polgar AM, Workentin MS, Corrigan JF. NHC Ligated Group 11 Metal-Arylthiolates Containing an Azide Functionality Amenable to “Click” Reaction Chemistry. Inorg Chem 2018; 57:11184-11192. [DOI: 10.1021/acs.inorgchem.8b01750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vaishnavi Somasundaram
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Praveen N. Gunawardene
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Alexander M. Polgar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Mark S. Workentin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 3K7 Canada
| | - John F. Corrigan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 3K7 Canada
| |
Collapse
|
29
|
Beto CC, Holt ED, Yang Y, Ghiviriga I, Schanze KS, Veige AS. A new synthetic route to in-chain metallopolymers via copper(i) catalyzed azide-platinum-acetylide iClick. Chem Commun (Camb) 2018; 53:9934-9937. [PMID: 28829464 DOI: 10.1039/c7cc06289c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The first example of an in-chain metallo-poly(triazolate) synthesized by CuAAC is reported. Azido-platinum-acetylide (A-M-B) monomers are catalytically polymerized with copper(i) acetate to yield 1,2,3-triazolate linked Pt(ii) units. The metallopolymers are characterized by multinuclear NMR, IR, UV/Vis, GPC, and MS.
Collapse
Affiliation(s)
- C C Beto
- University of Florida, Department of Chemistry, Center for Catalysis, P. O. Box 117200, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Schmid P, Maier M, Pfeiffer H, Belz A, Henry L, Friedrich A, Schönfeld F, Edkins K, Schatzschneider U. Catalyst-free room-temperature iClick reaction of molybdenum(ii) and tungsten(ii) azide complexes with electron-poor alkynes: structural preferences and kinetic studies. Dalton Trans 2018; 46:13386-13396. [PMID: 28933494 DOI: 10.1039/c7dt03096g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two isostructural and isoelectronic group VI azide complexes of the general formula [M(η3-allyl)(N3)(bpy)(CO)2] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3 + 2] cycloaddition reaction. Reaction with phenyl(trifluoromethyl)acetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 °C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3 ± 0.1) × 10-2 M-1 s-1, which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 × 10-3 s-1, which increased in the order of Mo > W and F3C-C[triple bond, length as m-dash]C-COOEt > DMAD.
Collapse
Affiliation(s)
- Paul Schmid
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mansour AM, Friedrich A. IClick cycloaddition reaction of light-triggered manganese(i) carbonyl complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj01838c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For a binuclear blue-light-induced CO-releasing manganese(i) tricarbonyl complex bearing bidentate ligand, the effect of the ancillary ligand on the dark stability and photolysis process was studied.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Cairo 12613
- Egypt
| | - Alexandra Friedrich
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
32
|
Waag-Hiersch L, Mößeler J, Schatzschneider U. Electronic Influences on the Stability and Kinetics of Cp* Rhodium(III) Azide Complexes in the iClick Reaction with Electron-Poor Alkynes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luisa Waag-Hiersch
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
33
|
He Q, Wang J, Mo Y, Wei C, Fang X, Xing Z, Zhang S, Zhang X. A rapid screening platform for catalyst discovery in azide-alkyne cycloaddition by ICP-MS/MS. Talanta 2017; 165:39-43. [PMID: 28153272 DOI: 10.1016/j.talanta.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
We developed a rapid high-throughput screening platform using a modified ICP-MS/MS system for monovalence metal ions catalysts discovery in azide-alkyne cycloaddition. Among the ten monovalence metal ions in the first row of periodic table containing Sc+, Ti+, V+, Cr+, Mn+, Fe+, Co+, Ni+, Cu+, and Zn+, five monovalence metal ions of Sc+, Co+, Ni+, Cu+ and Zn+ ions show relatively stronger catalytic activities than others. The catalytic mechanism of Sc+, Co+ and Ni+ ions is similar to the Cu+ ions, but Zn+ ions take a different catalytic route. A yields range of 77-98% for azide-alkyne cycloaddition was achieved with Sc+, Co+, Ni+, Cu+ and Zn+ ions as catalyst, respectively by using a UV laser ablation reactor in 20min, notable that the yields of Co+ and Sc+ ions were even higher than the common catalyst of Cu+ ions. The proposed platform would be used not only for catalyst discovery in azide-alkyne cycloaddition, but also for the discovery of single atom/ion catalysts in other organic reactions.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia Wang
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yuxiang Mo
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Chao Wei
- National Institute of Metrology, Beijing 100029, China
| | - Xiang Fang
- National Institute of Metrology, Beijing 100029, China
| | - Zhi Xing
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Yang X, VenkatRamani S, Beto CC, Del Castillo TJ, Ghiviriga I, Abboud KA, Veige AS. Single versus Double Cu(I) Catalyzed [3 + 2] Azide/Platinum Diacetylide Cycloaddition Reactions. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xi Yang
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Sudarsan VenkatRamani
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Christopher C. Beto
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Trevor J. Del Castillo
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A. Abboud
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Adam S. Veige
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
35
|
Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zhu L, Brassard CJ, Zhang X, Guha PM, Clark RJ. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. CHEM REC 2016; 16:1501-17. [PMID: 27216993 DOI: 10.1002/tcr.201600002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 01/07/2023]
Abstract
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4-disubstituted-1,2,3-triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring-formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π-backbonding with copper(I), azides with ancillary copper-binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne-involved CuAAC reactions are also included, based on the relatively limited data that are available at this point.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Christopher J Brassard
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Xiaoguang Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - P M Guha
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Ronald J Clark
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| |
Collapse
|
37
|
He Q, Xing Z, Wei C, Fang X, Zhang S, Zhang X. Rapid screening of copper intermediates in Cu(i)-catalyzed azide–alkyne cycloaddition using a modified ICP-MS/MS platform. Chem Commun (Camb) 2016; 52:10501-4. [DOI: 10.1039/c6cc04793a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid screening of Cu+-intermediates by using 63Cu+ or 65Cu+ ions as catalysts in Cu(i)-catalyzed azide–alkyne cycloaddition was realized using an on-line modified ICP-MS/MS platform.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhi Xing
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chao Wei
- National Institute of Metrology
- Beijing 100029
- China
| | - Xiang Fang
- National Institute of Metrology
- Beijing 100029
- China
| | - Sichun Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Xinrong Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
38
|
Abstract
In this study, the mechanism of AgAAC reaction has been studied by quantum mechanical calculations to gain insights into this promising reaction and the first successful application of a Ag catalyst alone in AAC.
Collapse
Affiliation(s)
- Esra Boz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Nurcan Ş. Tüzün
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| |
Collapse
|
39
|
Simpson PV, Skelton BW, Raiteri P, Massi M. Photophysical and photochemical studies of tricarbonyl rhenium(i) N-heterocyclic carbene complexes containing azide and triazolate ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj03301b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium NHC complexes bound to azide anions readily react with alkynes to form the corresponding triazolate complexes, a new class of photochemically active species.
Collapse
Affiliation(s)
- Peter V. Simpson
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley 6009 WA
- Australia
| | - Paolo Raiteri
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Massimiliano Massi
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| |
Collapse
|