1
|
Han S, Agbenyeke RE, Lee GY, Park BK, Kim CG, Eom T, Son SU, Han JH, Ryu JY, Chung TM. Novel Heteroleptic Tin(II) Complexes Capable of Forming SnO and SnO 2 Thin Films Depending on Conditions Using Chemical Solution Deposition. ACS OMEGA 2022; 7:1232-1243. [PMID: 35036785 PMCID: PMC8757355 DOI: 10.1021/acsomega.1c05744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A new heteroleptic complex series of tin was synthesized by the salt metathesis reaction of SnX2 (X = Cl, Br, and I) with aminoalkoxide and various N-alkoxy-functionalized carboxamide ligands. The complexes, [ClSn(dmamp)]2 (1), [BrSn(dmamp)]2 (2), and [ISn(dmamp)]2 (3), were prepared from the salt metathesis reaction of SnX2 with one equivalent of dmamp; [Sn(dmamp)(empa)]2 (4), [Sn(dmamp)(mdpa)]2 (5), and [Sn(dmamp)(edpa)]2 (6) were prepared via the salt metathesis reaction using complex 2 with one equivalent of N-alkoxy-functionalized carboxamide ligand. Complexes 1-5 displayed dimeric molecular structures with tin metal centers interconnected by μ2-O bonding via the alkoxy oxygen atom. The molecular structures of complexes 1-5 showed distorted trigonal bipyramidal geometries with lone pair electrons in the equatorial position. Using complex 6 as a tin precursor, SnO x films were deposited by chemical solution deposition (CSD) and subsequent post-deposition annealing (PDA) at high temperatures. SnO and SnO2 films were selectively obtained under controlled PDA atmospheres of argon and oxygen, respectively. The SnO films featured a tetragonal romarchite structure with high crystallinity and a preferred growth orientation along the (101) plane. They also exhibited a lower transmittance of >52% at 400 nm due to an optical band gap of 2.9 eV. In contrast, the SnO2 films exhibited a tetragonal cassiterite crystal structure and an extremely high transmittance of >97% at 400 nm was observed with an optical band gap of 3.6 eV.
Collapse
Affiliation(s)
- Seong
Ho Han
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
- Department
of Chemistry and Department of Energy Science, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Raphael Edem Agbenyeke
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
- Department
of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Ga Yeon Lee
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
- Department
of Chemistry and Department of Energy Science, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Bo Keun Park
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
- Department
of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Chang Gyoun Kim
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
- Department
of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Taeyong Eom
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
| | - Seung Uk Son
- Department
of Chemistry and Department of Energy Science, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jeong Hwan Han
- Department
of Materials Science and Engineering, Seoul
National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Ryu
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
| | - Taek-Mo Chung
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic
of Korea
- Department
of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| |
Collapse
|
3
|
Davaasuren B, Khanderi J, Rothenberger A. Polynuclear Iron-Oxo/Hydroxy Complexes of Ketoacidoximate Ligands: Synthesis, Structures and Conversion to Ferric Oxide. ChemistrySelect 2017. [DOI: 10.1002/slct.201701034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bambar Davaasuren
- Physical Sciences and Engineering Division; 4700 King Abdullah University of Science & Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Jayaprakash Khanderi
- Physical Sciences and Engineering Division; 4700 King Abdullah University of Science & Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Alexander Rothenberger
- Physical Sciences and Engineering Division; 4700 King Abdullah University of Science & Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Khanderi J, Davaasuren B, Rothenberger A. Synthesis and Characterization of Cadmium (II), Lead (II), and Indium (III) Ketoacidoximate Complexes and their Conversion to Metal Oxides. ChemistrySelect 2016. [DOI: 10.1002/slct.201600513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jayaprakash Khanderi
- Physical Sciences and Engineering Division; 4700 King Abdullah University of Science & Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Bambar Davaasuren
- Physical Sciences and Engineering Division; 4700 King Abdullah University of Science & Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Alexander Rothenberger
- Physical Sciences and Engineering Division; 4700 King Abdullah University of Science & Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|