1
|
Hervé M, Akagi S, Guérin L, Gee LB, Ribson RD, Chollet M, Cammarata M, Nagashima S, Ohkoshi SI, Tokoro H, Collet E. Strain-affected ferroelastic domain walls in RbMnFe charge-transfer materials undergoing collective Jahn-Teller distortion. RSC Adv 2024; 14:35081-35089. [PMID: 39497769 PMCID: PMC11533542 DOI: 10.1039/d4ra06397j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024] Open
Abstract
Many rubidium manganese hexacyanoferrate materials, with the general formula Rb x Mn[Fe(CN)6](x+2)/3·zH2O, exhibit diverse charge-transfer-based functionalities due to the bistability between a high temperature MnII(S = 5/2)FeIII(S = 1/2) cubic phase and a low-temperature MnIII(S = 2)FeII(S = 0) tetragonal phase. The collective Jahn-Teller distortion on the Mn sites is responsible for the cubic-to-tetragonal ferroelastic phase transition, which is associated with the appearance of ferroelastic domains. In this study, we use X-ray diffraction to reveal the coexistence of 3 types of ferroelastic tetragonal domains and estimate the spatial extension of the strain around the domain walls, which represents about 30% of the volume of the crystal.
Collapse
Affiliation(s)
- Marius Hervé
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 35000 Rennes France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo 7-3-1 Hongo Tokyo 113-0033 Japan
| | - Shintaro Akagi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Laurent Guérin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 35000 Rennes France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo 7-3-1 Hongo Tokyo 113-0033 Japan
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park CA USA
| | - Ryan D Ribson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park CA USA
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park CA USA
| | - Marco Cammarata
- ESRF - The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Shuntaro Nagashima
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Shin-Ichi Ohkoshi
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo 7-3-1 Hongo Tokyo 113-0033 Japan
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroko Tokoro
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo 7-3-1 Hongo Tokyo 113-0033 Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 35000 Rennes France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo 7-3-1 Hongo Tokyo 113-0033 Japan
- Institut Universitaire de France (IUF) 75231 Paris France
| |
Collapse
|
2
|
Torres Ramírez RG, Trzop E, Collet E. Magnetoelectric and MIESST effects in spin crossover materials exhibiting symmetry-breaking. Dalton Trans 2024; 53:10159-10167. [PMID: 38819197 DOI: 10.1039/d4dt00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Giant magnetoelectric coupling and magnetic-field-induced spin state trapping (MIESST) were recently reported in spin crossover materials with polar phases. We discuss these phenomena considering the distinct contributions of the change of the molecular spin state, driven by the magnetic field, and the coupled structural symmetry-breaking during the stepwise change of electric polarisation or MIESST.
Collapse
Affiliation(s)
- Ricardo G Torres Ramírez
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
- Institut universitaire de France (IUF), France
| |
Collapse
|
3
|
Li RX, Sun HY, Liang HC, Yi C, Yao NT, Meng YS, Xiong J, Liu T, Zhu YY. Slow magnetic relaxation in mononuclear octa-coordinate Fe(II) and Co(II) complexes from a Bpybox ligand. Dalton Trans 2022; 51:8865-8873. [PMID: 35635033 DOI: 10.1039/d2dt00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 3d transition metal mononuclear complexes, [(FeL2)(ClO4)2]2·CH3CN (1) and (CoL2)(ClO4)2·2CH3CN (2), have been prepared from a rigid tetradentate bpybox (L = 6,6'-bis(2,5-dihydrooxazol-4-yl)-2,2'-bipyridine) ligand. Single crystal X-ray diffraction analyses together with the help of calculations show that both compounds are octa-coordinate. Direct current magnetic studies reveal their significant magnetic anisotropy. Impressively, field-induced relaxation of magnetism is observed in the two complexes and the apparent anisotropy barriers are 14.1 K for 1 and 21.6 K for 2, respectively. Theoretical calculations reveal that two Fe(II) centers in 1 have small negative D values of -4.897 and -4.825 cm-1 and relatively small E values of 0.646 and 0.830 cm-1, indicating a uniaxial magnetic anisotropy. In contrast, the D and E values in the Co(II) center of 2 are 46.42 cm-1 and 11.51 cm-1, featuring a rhombic anisotropy. This work demonstrates that field-induced slow magnetic relaxation in 3d transition metal complexes with high coordination numbers can be manipulated through rigid ligand design.
Collapse
Affiliation(s)
- Rui-Xia Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Cheng Yi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yuan-Yuan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|
4
|
Liang HC, Pan Y, Zhu HL, Meng YS, Liu CH, Liu T, Zhu YY. The substituent effect on the spin-crossover behaviour in a series of mononuclear Fe( ii) complexes from thio-pybox ligands. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00208f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correlation of the SCO temperature and substituent electronegativity of ligands is observed and discussed for a family of [Fe(thio-pybox)2]2+ complexes.
Collapse
Affiliation(s)
- Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yao Pan
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
5
|
Jakobsen VB, Trzop E, Dobbelaar E, Gavin LC, Chikara S, Ding X, Lee M, Esien K, Müller-Bunz H, Felton S, Collet E, Carpenter MA, Zapf VS, Morgan GG. Domain Wall Dynamics in a Ferroelastic Spin Crossover Complex with Giant Magnetoelectric Coupling. J Am Chem Soc 2021; 144:195-211. [PMID: 34939802 PMCID: PMC8759087 DOI: 10.1021/jacs.1c08214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Pinned and mobile
ferroelastic domain walls are detected in response
to mechanical stress in a Mn3+ complex with two-step thermal
switching between the spin triplet and spin quintet forms. Single-crystal
X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three
distinct symmetry-breaking phase transitions in the polar space group
series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and
spin state order parameters, and the three transitions are Landau
tricritical, first order, and first order, respectively. The two first-order
phase transitions also show changes in magnetic properties and spin
state ordering in the Jahn–Teller-active Mn3+ complex.
On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has
been confirmed by resonant ultrasound spectroscopy. Measurements of
magnetoelectric coupling revealed significant changes in electric
polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected
when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability
at 90 K. Thus, we showcase here a rare example of multifunctionality
in a spin crossover material where the strain and polarization tensors
and structural and spin state order parameters are strongly coupled.
Collapse
Affiliation(s)
- Vibe Boel Jakobsen
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Emiel Dobbelaar
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurence C Gavin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shalinee Chikara
- Department of Physics, Auburn University Auburn, Alabama 36849, United States
| | - Xiaxin Ding
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Minseong Lee
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kane Esien
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Solveig Felton
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Michael A Carpenter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England, United Kingdom
| | - Vivien S Zapf
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Shahid N, Burrows KE, Howard MJ, Pask CM, Cespedes O, McGowan PC, Halcrow MA. Spin-States of Diastereomeric Iron(II) Complexes of 2,6-Bis(thiazolin-2-yl)pyridine (ThioPyBox) Ligands and a Comparison with the Corresponding PyBox Derivatives. Inorg Chem 2021; 60:14336-14348. [PMID: 34472842 DOI: 10.1021/acs.inorgchem.1c01988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This report investigates homoleptic iron(II) complexes of thiazolinyl analogues of chiral PyBox tridentate ligands: 2,6-bis(4-phenyl-4,5-dihydrothiazol-2-yl)pyridine (L1Ph), 2,6-bis(4-isopropyl-4,5-dihydrothiazol-2-yl)pyridine (L1iPr), and 2,6-bis(4-tert-butyl-4,5-dihydrothiazol-2-yl)pyridine (L1t-Bu). Crystallographic data imply the larger and more flexible thiazolinyl rings reduce steric clashes between the R substituents in homochiral [Fe((R)-L1R)2]2+ or [Fe((S)-L1R)2]2+ (R = Ph, iPr, or t-Bu), compared to their PyBox (L2R) analogues. Conversely, the larger heterocyclic S atoms are in close contact with the R substituents in heterochiral [Fe((R)-L1Ph)((S)-L1Ph)]2+, giving it a more sterically hindered ligand environment than that in [Fe((R)-L2Ph)((S)-L2Ph)]2+ (L2Ph = 2,6-bis(4-phenyl-4,5-dihydrooxazol-2-yl)pyridine). Preformed [Fe((R)-L1Ph)((S)-L1Ph)]2+ and [Fe((R)-L1iPr)((S)-L1iPr)]2+ do not racemize by ligand redistribution in CD3CN solution, but homochiral [Fe(L1iPr)2]2+ and [Fe(L1t-Bu)2]2+ both undergo partial ligand displacement in that solvent. Homochiral [Fe(L1Ph)2]2+ and [Fe(L1iPr)2]2+ exhibit spin-crossover equilibria in CD3CN, centered at 344 ± 6 K and 277 ± 1 K respectively, while their heterochiral congeners are essentially low-spin within the liquid range of the solvent. These data imply that the diastereomers of [Fe(L1Ph)2]2+ and [Fe(L1iPr)2]2+ show a greater difference in their spin-state behaviors than was previous found for [Fe(L2Ph)2]2+. Gas-phase DFT calculations (B86PW91/def2-SVP) of the [Fe(L1R)2]2+ and [Fe(L2R)2]2+ complexes reproduce most of the observed trends, but they overstabilize the high-spin state of SCO-active [Fe(L1iPr)2]2+ by ca. 1.5 kcal mol-1. This might reflect the influence of intramolecular dispersion interactions on the spin states of these compounds. Attempts to model this with the dispersion-corrected functionals B97-D2 or PBE-D3 were less successful than our original protocol, confirming that the spin states of sterically hindered molecules are a challenging computational problem.
Collapse
Affiliation(s)
- Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Kay E Burrows
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Mark J Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds LS2 9JT, United Kingdom
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
7
|
Luo B, Pan Y, Meng Y, Liu Q, Yin J, Liu T, Zhu Y. Construction of Magneto‐Fluorescent Bifunctional Spin‐Crossover Fe(II) Complex from Pyrene‐Decorated Pybox Ligand. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bing‐Xue Luo
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yao Pan
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Jun Yin
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yuan‐Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
8
|
Wang RG, Meng YS, Gao FF, Gao WQ, Liu CH, Li A, Liu T, Zhu YY. Ligand symmetry significantly affects spin crossover behaviour in isomeric [Fe(pybox) 2] 2+ complexes. Dalton Trans 2021; 50:3369-3378. [PMID: 33595584 DOI: 10.1039/d0dt03978k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the correlation between the spin-state behaviour and the structural features in transition-metal complexes is of pronounced importance to the design of spin crossover compounds with high performance. However, the study of the influence of ligand symmetry on the spin crossover properties is still limited due to the shortage of suitable structural systems. Herein we report the magneto-structural correlations of three mononuclear Fe(ii) isomers with respect to their ligand symmetry. In this work, two phenyl-substituted meso and optically pure pybox ligands were employed to construct meso (1), optically pure (2), and racemic (3) ligand types of [Fe(pybox)2]2+ complexes. Their magnetic susceptibilities were measured via temperature-dependent paramagnetic 1H NMR spectroscopy. We fitted the midpoint temperatures of the transition (T1/2) of 260 K for 1(ClO4), 247 K for 2(ClO4), and 281 K for 3(ClO4). The influence of structural symmetry on spin crossover was rationalized through density functional theory calculations. The optimized structures of [Fe(pybox)2]2+ complex cations show that the geometric distortion of the central FeN6 coordination sphere is mainly caused by the steric congestions between adjacent phenyl substituents. In these compounds, there is a distinct correlation that more steric congestions produce larger coordination distortion and favor the electron configuration in the high-spin state, which reflects in the increase of T1/2. Additionally, the influence of the counter anion and lattice solvent on the meso series compounds was inspected. It is revealed that multiple factors dominate the spin-state behaviour in the solid state. This work provides deep insight into the effect of ligand symmetry on the spin transition behaviour in spin crossover compounds. It demonstrates that molecular symmetry should be considered in the design of spin crossover compounds.
Collapse
Affiliation(s)
- Run-Guo Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pan Y, Meng YS, Liu Q, Gao WQ, Liu CH, Liu T, Zhu YY. Construction of SCO-Active Fe(II) Mononuclear Complexes from the Thio-pybox Ligand. Inorg Chem 2020; 59:7398-7407. [PMID: 32401025 DOI: 10.1021/acs.inorgchem.9b03506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new spin-crossover complexes provides novel promising switching materials with significant potential at the molecular level. Ter-imine-type molecules represent one of the important classes of ligands in creating SCO-active complexes. Herein we report a family of mononuclear Fe(II) SCO-active compounds constructed from a new type of ter-imine ligand named the thio-pybox ligand (2,6-bis(4,4-dimethyl-4,5-dihydrothiazol-2-yl)pyridine, L1). Through the variation of counteranions, some cases display complete SCO and with T1/2 near ambient temperature. Among them, annealed [FeII(L1)2](ClO4)2 [1(ClO4)] shows T1/2↓ and T1/2↑ as 319 and 349 K, respectively. The wide thermal hysteresis of ΔT = 30 K originated from the weak interaction between complex cations and counteranions in the crystal lattice. Impressively, its high-spin population can be increased considerably by annealing at high temperature. The metastable high-spin phase is stable in the successive magnetic measurements and would gradually relax to its initial state with high population of low-spin configuration at ambient temperature. In acetonitrile-diluted solution, 1(ClO4) still maintains SCO with an estimated T1/2 at 240 K. Differential scanning calorimetry discloses the structural phase at around 355 K in the first heating process and the increase in the high-spin population concomitant with annealing was also corroborated by 57Fe Mössbauer measurements. Additionally, the influences on SCO by counteranion and ligand structure are investigated, which show that the fine tuning of complex structures can affect the behavior of the spin state significantly. Finally, magneto-structural correlation studies were performed on the structures of 1(ClO4) and its oxygen analogue at multiple temperatures. The analyses of some structural parameters, including terminal N···N donor separation, bite angle, patulous angle, and the root mean squared deviation indicate that the replacement of the oxygen atom with a sulfur atom can effectively improve the flexibility and release the steric strain and thus tune the SCO toward ambient temperature. Our research demonstrates the rational design of the ligand can lead to new SCO-active compounds with high performance.
Collapse
Affiliation(s)
- Yao Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wan-Qing Gao
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
10
|
Costa JS, Rodríguez-Jiménez S, Craig GA, Barth B, Beavers CM, Teat SJ, Gagnon KJ, Barrios LA, Roubeau O, Aromí G. Selective signalling of alcohols by a molecular lattice and mechanism of single-crystal-to-single-crystal transformations. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00645a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular material undergoes spin-switching as it exchanges MeOH, EtOH or nPrOH with acetone from the lattice. The subsequent thermal single-crystal-to-single-crystal desorption of nPrOH is followed by single crystal X-ray diffraction snapshots.
Collapse
Affiliation(s)
- José Sánchez Costa
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | | | - Gavin A. Craig
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Benjamin Barth
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | | | | | | | - Leoní A. Barrios
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB)
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- CSIC and Universidad de Zaragoza
- Zaragoza
- Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB)
| |
Collapse
|
11
|
Dey B, Roy S, Titiš J, Boča R, Bera SP, Mondal A, Konar S. Above Room Temperature Spin Transition in Thermally Stable Mononuclear Fe(III) Complexes. Inorg Chem 2019; 58:1134-1146. [DOI: 10.1021/acs.inorgchem.8b02405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bijoy Dey
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadip Roy
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Siba Prasad Bera
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpan Mondal
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
12
|
Gao WQ, Meng YS, Liu CH, Pan Y, Liu T, Zhu YY. Spin crossover and structural phase transition in homochiral and heterochiral Fe[(pybox)2]2+ complexes. Dalton Trans 2019; 48:6323-6327. [DOI: 10.1039/c8dt04893b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover and structural phase transition were discovered in three pairs of homochiral and heterochiral [Fe(pybox)2]2+ diastereomers.
Collapse
Affiliation(s)
- Wan-Qing Gao
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yao Pan
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
- State Key Laboratory of Fine Chemicals
| |
Collapse
|
13
|
Burrows KE, Kulmaczewski R, Cespedes O, Barrett SA, Halcrow MA. The speciation of homochiral and heterochiral diastereomers of homoleptic cobalt(II) and zinc(II) PyBox complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Kimura A, Ishida T. Spin-Crossover Temperature Predictable from DFT Calculation for Iron(II) Complexes with 4-Substituted Pybox and Related Heteroaromatic Ligands. ACS OMEGA 2018; 3:6737-6747. [PMID: 31458846 PMCID: PMC6644749 DOI: 10.1021/acsomega.8b01095] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 06/10/2023]
Abstract
Spin-crossover (SCO) is a reversible transition between low and high spin states by external stimuli such as heat. The SCO behavior and transition temperature (T 1/2) of a series of [FeII(X-pybox)2](ClO4)2 were studied to establish a methodology for ligand-field engineering, where X-pybox stands for 2,6-bis(oxazolin-2-yl)pyridine substituted with X at the 4-position of the pyridine ring. We utilized X = MeO, Me, 3-thienyl, Ph, H, MeS, 2-thienyl, N3, Cl, Br, 3-pyridyl, and 4-pyridyl. The solution susceptometry on five new derivatives with X = Me, 2-thienyl, N3, Br, and 3-pyridyl was performed in acetone, giving the SCO temperatures of 220, 260, 215, 280, and 270 K, respectively. The density-functional-theory molecular orbital (MO) calculation was performed on the ligands with geometry optimization. The atomic charge on the pyridine nitrogen atom [ρ(Npy)] was extracted from the natural orbital population analysis. Positive correlation appeared in the T 1/2 versus ρ(Npy) plot with R 2 = 0.734, being consistent with the analysis using the Hammett substituent constants (σp and σp +). This finding well agrees with the mechanism proposed: the rich electron density lifts the t2g energy level through the dπ-pπ interaction, resulting in a narrow t2g-eg energy gap and favoring the high-spin state and low T 1/2. The MO method was successfully applied to the known SCO-active iron(II) compounds involving 4-substituted 2,6-bis(pyrazol-1-yl)pyridines. A distinct positive correlation appeared in the T 1/2 versus ρ(Npy) plot. The comparison of correlation coefficients indicates that ρ(Npy) is a more reliable parameter than σp or σp + to predict a shift of T 1/2. Furthermore, this method can be more generalized by application to another known SCO family having 3-azinyl-4-p-tolyl-5-phenyl-1,2,4-triazole ligand series, where azinyl stands for a 2-azaaromatic ring. A good linear correlation was found in the T 1/2 versus ρ(NA) plot (NA is the ligating nitrogen atom in the azaaromatic ring). Finally, we will state a reason why the present treatment is competent to predict the SCO equilibrium position only by consideration on the electronic perturbation.
Collapse
|
15
|
Phukan B, Mukherjee C, Goswami U, Sarmah A, Mukherjee S, Sahoo SK, Moi SC. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent. Inorg Chem 2018; 57:2631-2638. [PMID: 29424537 DOI: 10.1021/acs.inorgchem.7b03039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disclosed here are a piperazine, a pyridine, and two carboxylate groups containing pentadentate ligand H2pmpa and its corresponding water-soluble Mn(II) complex (1). DFT-based structural optimization implied that the complex had pentagonal bipyramidal geometry where the axial positions were occupied by two water molecules, and the equatorial plane was constituted by the ligand ON3O donor set. Thus, a bis(aquated) disc-like Mn(II) complex has been synthesized. The complex showed higher stability compared with Mn(II)-EDTA complex [log KMnL = 14.29(3)] and showed a very high r1 relaxivity value of 5.88 mM-1 s-1 at 1.41 T, 25 °C, and pH = 7.4. The relaxivity value remained almost unaffected by the pH of the medium in the range of 6-10. Although the presence of 200 equiv of fluoride and bicarbonate anions did not affect the relaxivity value appreciably, an increase in the value was noticed in the presence of phosphate anion due to slow tumbling of the complex. Cell viability measurements, as well as phantom MR images using clinical MRI imager, consolidated the possible candidature of complex 1 as a positive contrast agent.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Chandan Mukherjee
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Upashi Goswami
- Centre for Nanotechnology , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | - Amrit Sarmah
- Department of Molecular Modelling , Institute of Organic Chemistry and Biochemistry ASCR , Flemingovo nám. 2 , CZ-166 10 Prague 6 , Czech Republic
| | - Subhajit Mukherjee
- Department of Chemistry , National Institute of Technology , Durgapur 713209 , West Bengal , India
| | - Suban K Sahoo
- Department of Applied Chemistry , S.V. National Institute of Technology , Surat 395007 , Gujarat , India
| | - Sankar Ch Moi
- Department of Chemistry , National Institute of Technology , Durgapur 713209 , West Bengal , India
| |
Collapse
|
16
|
Phukan B, Mukherjee C, Varshney R. A new heptadentate picolinate-based ligand and its corresponding Gd(iii) complex: the effect of pendant picolinate versus acetate on complex properties. Dalton Trans 2018; 47:135-142. [DOI: 10.1039/c7dt04150k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing one picolinate pendant by acetate group in H4bpeda ligand, the synthesised bis(aquated) Gd(iii) complex of ligand H4peada showed better stability and r1 relaxivity for its potential use as MRI contrast agent.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Chandan Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Raunak Varshney
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-100054
- India
| |
Collapse
|
17
|
Pybox-Iron(II) Spin-Crossover Complexes with Substituent Effects from the 4-Position of the Pyridine Ring (Pybox = 2,6-Bis(oxazolin-2-yl)pyridine). INORGANICS 2017. [DOI: 10.3390/inorganics5030052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spin-crossover (SCO) behavior of a series of [Fe(X-pybox)2](ClO4)2 was investigated, where X-pybox stands for 4-X-substituted 2,6-bis(oxazolin-2-yl)pyridine with X = H, Cl, Ph, CH3O, and CH3S. We confirmed that the mother compound [Fe(H-pybox)2](ClO4)2 underwent SCO above room temperature. After X was introduced, the SCO temperatures (T1/2) were modulated as 310, 230, and 330 K for X = Cl, Ph, and CH3S, respectively. The CH3O derivative possessed the high-spin state down to 2 K. Crystallographic analysis for X = H, Cl, CH3O, and CH3S was successful, being consistent with the results of the magnetic study. Distorted coordination structures stabilize the HS (high-spin) state, and the highest degree of the coordination structure distortion is found in the CH3O derivative. A plot of T1/2 against the Hammett substituent constant σp showed a positive relation. Solution susceptometry was also performed to remove intermolecular interaction and rigid crystal lattice effects, and the T1/2’s were determined as 260, 270, 240, 170, and 210 K for X = H, Cl, Ph, CH3O, and CH3S, respectively, in acetone. The substituent effect on T1/2 became very distinct, and it is clarified that electron-donating groups stabilize the HS state.
Collapse
|
18
|
Burrows KE, McGrath SE, Kulmaczewski R, Cespedes O, Barrett SA, Halcrow MA. Spin States of Homochiral and Heterochiral Isomers of [Fe(PyBox) 2 ] 2+ Derivatives. Chemistry 2017; 23:9067-9075. [PMID: 28387453 DOI: 10.1002/chem.201700820] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/08/2022]
Abstract
The following iron(II) complexes of 2,6-bis(oxazolinyl)pyridine (PyBox; LH ) derivatives are reported: [Fe(LH )2 ][ClO4 ]2 (1); [Fe((R)-LMe )2 ][ClO4 ]2 ((R)-2; LMe =2,6-bis{4-methyloxazolinyl}pyridine); [Fe((R)-LPh )2 ][ClO4 ]2 ((R)-3) and [Fe((R)-LPh )((S)-LPh )][ClO4 ]2 ((RS)-3; LPh =2,6-bis{4-phenyloxazolinyl}pyridine); and [Fe((R)-LiPr )2 ][ClO4 ]2 ((R)-4) and [Fe((R)-LiPr )((S)-LiPr )][ClO4 ]2 ((RS)-4; LiPr =2,6-bis{4-isopropyloxazolinyl}pyridine). Solid (R)-3⋅MeNO2 exhibits an unusual very gradual, but discontinuous thermal spin-crossover with an approximate T1/2 of 350 K. The discontinuity around 240 K lies well below T1/2 , and is unconnected to a crystallographic phase change occurring at 170 K. Rather, it can be correlated with a gradual ordering of the ligand conformation as the temperature is raised. The other solid compounds either exhibit spin-crossover above room temperature (1 and (RS)-3), or remain high-spin between 5-300 K [(R)-2, (R)-4 and (RS)-4]. Homochiral (R)-3 and (R)-4 exhibit more twisted ligand conformations and coordination geometries than their heterochiral isomers, which can be attributed to steric clashes between ligand substituents [(R)-3]; or, between the isopropyl substituents of one ligand and the backbone of the other ((R)-4). In solution, (RS)-3 retains its structural integrity but (RS)-4 undergoes significant racemization through ligand redistribution by 1 H NMR. (R)-4 and (RS)-4 remain high-spin in solution, whereas the other compounds all undergo spin-crossover equilibria. Importantly, T1/2 for (R)-3 (244 K) is 34 K lower than for (RS)-3 (278 K) in CD3 CN, which is the first demonstration of chiral discrimination between metal ion spin states in a molecular complex.
Collapse
Affiliation(s)
- Kay E Burrows
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sarah E McGrath
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds, LS2 9JT, UK
| | - Simon A Barrett
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
19
|
Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets. Sci Rep 2017; 7:42255. [PMID: 28176869 PMCID: PMC5296747 DOI: 10.1038/srep42255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.
Collapse
|
20
|
Ding ZY, Meng YS, Xiao Y, Zhang YQ, Zhu YY, Gao S. Probing the influence of molecular symmetry on the magnetic anisotropy of octahedral cobalt(ii) complexes. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00547d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of field-induced cobalt(ii) SIMs exhibit varying axial zero-field splitting parameter D values from positive to negative with the increased distortion of the octahedral geometry.
Collapse
Affiliation(s)
- Zhong-Yu Ding
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yi Xiao
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
- State Key Laboratory of Fine Chemicals
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
21
|
Zhu YY, Li HQ, Ding ZY, Lü XJ, Zhao L, Meng YS, Liu T, Gao S. Spin transitions in a series of [Fe(pybox)2]2+ complexes modulated by ligand structures, counter anions, and solvents. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00417b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of mononuclear Fe(ii) compounds is synthesized based on pybox ligands. Their spin-crossover behaviours can be effectively mediated by ligand structures, counter anions, and solvents.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Hong-Qing Li
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Zhong-Yu Ding
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Xiao-Jin Lü
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
22
|
Li HQ, Ding ZY, Pan Y, Liu CH, Zhu YY. Fluorescence tuning of Zn(ii)-based metallo-supramolecular coordination polymers and their application for picric acid detection. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00267f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metallo-supramolecular coordination polymers displayed strong and tunable visible luminescent emission and possessed the capability for detection of picric acid (PA) with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Hong-Qing Li
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Zhong-Yu Ding
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yao Pan
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| |
Collapse
|