1
|
Wang X, Yang J, Li X. Study on characteristics and microscopic mechanism of composite environment-friendly dust suppressant for urban construction site soil fugitive dust based on response surface methodology optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41954-41969. [PMID: 36640236 DOI: 10.1007/s11356-023-25224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Soil fugitive dust pollution caused by urban construction sites is a significant problem. To improve the dust suppression efficiency on the urban construction sites, hydroxypropyl guar (HPG), dodecyl dimethyl amine oxide (OB-2), and hydroxypropyl methylcellulose (HPMC) were selected as individual components of the composite dust suppressant using a single-factor test. The response surface methodology (RSM) was used to determine the optimal mixing proportions. After preparation, the characteristics of the composite dust suppressant were tested. Fourier-transform infrared spectroscopy and scanning electron microscopy (SEM) were used to characterize the composite dust suppressant and explore its mechanism. The results showed that 0.327% HPG, 0.6% OB-2, and 0.5% HPMC were the best compound concentrations. Under optimum conditions, the viscosity of the composite dust suppressant was 151.1 [Formula: see text], penetration time was 61.4 s, and water retention rate was 30.67%. Compared with traditional dust control by spraying water, it showed better resistance to evaporation at high temperatures and better wind erosion resistance. The antievaporation rate was 39.42% at 60 °C. After 11 d of continuous wind erosion at level 7, the wind erosion resistance rate was as high as 98.24%. The reason for the excellent dust suppression effect of the composite dust suppressant is that the methyl and hydroxyl groups in the solution diffuse to the surface of the soil fugitive dust particles using Brownian motion and gradually approach the corresponding groups in the soil fugitive dust particles. When the distance between the two reaches 10 [Formula: see text], adsorption occurs, causing small dust particles to stick together. Because of the stability of the covalent bonds in the methyl and hydroxyl groups, a stable solidified layer is formed on the soil fugitive dust surface after the evaporation of the composite dust inhibitor solution, thereby avoiding secondary dust. In addition, the composite dust suppressant is noncorrosive and friendly to the construction site environment. Therefore, the composite dust suppressant can effectively reduce soil fugitive dust, alleviate environmental pollution, and provide a reference for preventing and controlling soil fugitive dust on urban construction sites and preparing composite environment-friendly dust suppressants.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Junni Yang
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Li
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
2
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
3
|
Zhang C, Hu Y, Adams MD, Liu M, Li B, Shi T, Li C. Natural and human factors influencing urban particulate matter concentrations in central heating areas with long-term wearable monitoring devices. ENVIRONMENTAL RESEARCH 2022; 215:114393. [PMID: 36150440 DOI: 10.1016/j.envres.2022.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
In northern China, central heating, as an important source of urban particulate matter (UPM), causes more than half of the air pollution during the heating season and has significant spatial-temporal heterogeneity. Owing to the limitations of stationary air monitoring networks, few studies distinguish between heating/non-heating seasons and few have been conducted in urban areas. However, fixed monitoring cannot accurately capture the dynamic exposure of residents to UPM, and there is a lack of comprehensive evaluation of the factors affecting UPM. Therefore, this study used wearable Sniffer 4D equipment to monitor the concentrations of UPM (PM1, PM2.5, and PM10) in selected typical areas of Shenyang City from March 2019 to February 2020. A random forest model was combined with land use and point-of-interest data to analyze the contributions and marginal effects of multiple influences on UPM, in both heating and non-heating seasons. The results showed that in the eastern part of the study area, UPM showed completely opposite spatial distribution characteristics during the two seasons. The concentrations of UPM were higher during the heating season than during the non-heating season. The results indicated that temperature and humidity were important factors in diffusing UPM. The production and operation of boilers were important for the production of UPM. In two-dimensional landscape pattern indices, the percentage of forest and Shannon diversity index were the first and second most important factors, respectively. The three-dimensional pattern of buildings had important effects on the transport and diffusion of UPM (landscape height range >100, floor area ratio >1.3, and landscape volume density >5). Wearable devices could monitor the real situation of residents' exposure to UPM and quantify the factors influencing the spatial-temporal distribution of UPM in an ecological sense. These results provide a scientific basis for urban planning and for health risk reduction for residents.
Collapse
Affiliation(s)
- Chuyi Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Beijing, 100049, China; Department of Geography & Planning, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Yuanman Hu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China
| | - Matthew D Adams
- Department of Geography & Planning, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Miao Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China
| | - Binglun Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China
| | - Tuo Shi
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, 110034, China
| | - Chunlin Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
4
|
Hassan H, Kumar P, Kakosimos KE. The impact of local fugitive particulate matter and emission inventories on air quality and health in dry and arid areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153799. [PMID: 35151746 DOI: 10.1016/j.scitotenv.2022.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The arid and semi-arid regions are facing a huge brunt of fugitive Particulate Matter (fPM) pollution, usually ascribed to the natural dust generated at the regional level (>100 km). In this study, the contribution of locally generated fPM to air pollution and it's environmental risk were assessed at a typical dry-arid area in the Middle East (i.e., State of Qatar, 200 × 200 km2 domain) with the use of different emission and dispersion models. Four modelling scenarios were constructed to reflect standard practices (e.g., regional emission models and the World Health Organization's (WHO) Environmental Burden of Disease (EBD) method) and higher resolution calculations with emission models that were developed in past field campaigns. Emphasis was given to the effect on the WHO methodology beyond the typical emission estimates and ambient concentration levels. Eventually, the use of higher spatial resolution population and concentration data revealed fPM hot spots yielding up to 11.0 times higher short-term excess mortalities (an average increase of 1.8 times) compared to the baseline WHO methodology, where the whole population was exposed to a single average concentration. A difference that could be attributed to the improvement of the emission estimations for barren lands and traffic. For example, the estimated PM10 emission fluxes from barren lands, within the main metropolitan area, using the improved emissions model ranged from 0.05 to 42.0 μg m-2 s-1, which is considerably higher than the emissions predicted using just the literature models (0.03 to 2.0 μg m-2 s-1). Overall, the barren lands emissions accounted for more than 90% of the fPM emissions during the study period. Consequently, this study is one of the first to quantify the significance of locally induced fPM and highlight the need for dedicated field studies and improved emissions estimation tools.
Collapse
Affiliation(s)
- Hala Hassan
- Department of Chemical Engineering and Mary Kay O'Connor Process Safety Centre, Texas A&M University at Qatar, Education City, Doha, PO Box 23874, Qatar; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Department of Civil, Structural and Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Konstantinos E Kakosimos
- Department of Chemical Engineering and Mary Kay O'Connor Process Safety Centre, Texas A&M University at Qatar, Education City, Doha, PO Box 23874, Qatar; Aerosol and Particle Technology Laboratory, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas (APTL/CPERI/CERTH), Greece.
| |
Collapse
|
5
|
The Correlation Analysis between Air Quality and Construction Sites: Evaluation in the Urban Environment during the COVID-19 Pandemic. SUSTAINABILITY 2022. [DOI: 10.3390/su14127075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This research studies the data on air quality and construction activities from 29 January 2020 to 30 April 2020. The analysis focuses on three sample districts of Hangzhou’s Xiacheng, Gongshu, and Xiaoshan districts. The samples, respectively, represent low-level, mid-level, and high-level districts in the scale of construction projects. The correlative relationships are investigated, respectively, in the periods of ‘pandemic lockdown (29 January 2020–20 February 2020)’ and ‘after pandemic lockdown (21 February 2020–30 April 2020)’. The correlative equations are obtained. Based on the guideline values of air parameters provided by the Chinese criteria and standards, the recommended maximum scales of construction projects are defined. The numbers of construction sites are 16, 118, and 311 for the Xiacheng, Gongshu, and Xiaoshan districts during the imposed lockdown period, respectively, and 19, 88, 234, respectively, after the lockdown period. Because the construction site is only one influential factor on the air quality, and the database is not large enough, there are some limitations in the mathematical model and the management plan. Possible problem solving techniques and future studies are introduced at the end of the research study.
Collapse
|
6
|
Abstract
Many construction activities generate fine particles and severely threaten the physical health of construction workers. Although many dust control measures are implemented in the industry, the occupational health risks still exist. In order to improve the occupational health level, this study proposes a new method of reducing the construction dust pollution through a reasonable site layout plan. This method is based on the field measurement and dust diffusion law. The dust diffusion law can be fitted based on the field monitoring data. With diffusion law, the average dust concentration exposed to workers of different site layouts can be simulated. In addition, the cost of the dust control method is a concern for site managers. Therefore, the total transportation cost reduction is another optimization objective. Finally, the multi-objective particle swarm optimization (MOPSO) algorithm is used to search for an optimized site layout that can reduce dust pollution and transportation cost simultaneously. The result shows that average dust concentration exposed to workers and total transportation cost are significantly reduced by 60.62% and 44.3%, respectively. This paper quantifies the construction dust pollution and provides site managers with a practical solution to reduce the construction dust pollution at low cost.
Collapse
|
7
|
Problems and Directions in Creating a National Non-Road Mobile Machinery Emission Inventory: A Critical Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14063471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Greenhouse emissions and air pollutants pose a global threat to the environment and human health. Emission inventories are a valuable tool in understanding emission sources and their overall impact on the environment. Most cities and countries do not include non-road mobile machinery (NRMM) when compiling emission inventories. Furthermore, little effort has been made to understand better the impact of this source of emissions on the environment. For these reasons, this research examines the data from the existing NRMM emission inventories and other studies concerning NRMM emissions. After careful literature review, three main problems in creating a national NRMM emission inventory are identified and reviewed: lack of a comprehensive list of NRMM and their activity data, lack of emission factor data, and lack of research. The data from the existing inventories show that compared to some emissions, NRMM has a three times larger proportion of emissions compared to the proportion of energy consumption. Furthermore, there are significant differences in total emissions when comparing the same pollutants among different countries. A general lack of data is the common denominator for all these problems and can only be solved by creating national NRMM databases operated by a designated institution. This institution must be able to annually update relevant NRMM data through questionnaires and experimental research on the existing NRMM.
Collapse
|
8
|
Measurement and Monitoring of Particulate Matter in Construction Sites: Guidelines for Gravimetric Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14010558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies on particulate matter (PM) from construction activities are still at an early stage. Thus, there is still no consensus on standardized experimental methods for monitoring PM in construction sites, which impedes the advancement of knowledge on this subject. This work proposes guidelines for measuring and monitoring the concentration of suspended PM and the annoyance generated by sedimented particles on construction sites in urban areas. These guidelines aim to reduce the variability and uncertainties that exist during the PM sampling processes at construction sites. This study adopts a literature review strategy in order to update the available scientific literature based on empirical evidence obtained in experimental PM studies and relevant documents from government agencies. The proposed guidelines were applied in a study protocol for gravimetric monitoring PM and annoyance tracking generated by sedimented particles using sticky pads. As a result, this article details sampling techniques, procedures, and instruments, focusing on gravimetric sampling, highlighting their characteristics compared to other monitoring approaches. Additionally, it points out a series of parameters for the measurement and monitoring of PM. This paper seeks to support future researchers in this area, inform decision making for experimental sampling, and provide a benchmark for measuring and monitoring PM at construction sites.
Collapse
|
9
|
Wang S, Sun P, Sun F, Jiang S, Zhang Z, Wei G. The Direct and Spillover Effect of Multi-Dimensional Urbanization on PM 2.5 Concentrations: A Case Study from the Chengdu-Chongqing Urban Agglomeration in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010609. [PMID: 34682356 PMCID: PMC8536145 DOI: 10.3390/ijerph182010609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
The Chengdu-Chongqing urban agglomeration (CUA) faces considerable air quality concerns, although the situation has improved in the past 15 years. The driving effects of population, land and economic urbanization on PM2.5 concentrations in the CUA have largely been overlooked in previous studies. The contributions of natural and socio-economic factors to PM2.5 concentrations have been ignored and the spillover effects of multi-dimensional urbanization on PM2.5 concentrations have been underestimated. This study explores the spatial dependence and trend evolution of PM2.5 concentrations in the CUA at the grid and county level, analyzing the direct and spillover effects of multi-dimensional urbanization on PM2.5 concentrations. The results show that the mean PM2.5 concentrations in CUA dropped to 48.05 μg/m3 at an average annual rate of 4.6% from 2000 to 2015; however, in 2015, there were still 91% of areas exposed to pollution risk (>35 μg/m3). The PM2.5 concentrations in 92.98% of the area have slowly decreased but are rising in some areas, such as Shimian County, Xuyong County and Gulin County. The PM2.5 concentrations in this region presented a spatial dependence pattern of "cold spots in the east and hot spots in the west". Urbanization was not the only factor contributing to PM2.5 concentrations. Commercial trade, building development and atmospheric pressure were found to have significant contributions. The spillover effect of multi-dimensional urbanization was found to be generally stronger than the direct effects and the positive impact of land urbanization on PM2.5 concentrations was stronger than population and economic urbanization. The findings provide support for urban agglomerations such as CUA that are still being cultivated to carry out cross-city joint control strategies of PM2.5 concentrations, also proving that PM2.5 pollution control should not only focus on urban socio-economic development strategies but should be an integration of work optimization in various areas such as population agglomeration, land expansion, economic construction, natural adaptation and socio-economic adjustment.
Collapse
Affiliation(s)
- Sicheng Wang
- College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China;
| | - Pingjun Sun
- College of Geographical Sciences, Southwest University, Chongqing 400700, China;
| | - Feng Sun
- College of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China; (F.S.); (S.J.)
| | - Shengnan Jiang
- College of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China; (F.S.); (S.J.)
| | - Zhaomin Zhang
- College of Management, Shenzhen Polytechnic, Shenzhen 518000, China
- Correspondence: (Z.Z); (G.W)
| | - Guoen Wei
- College of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China; (F.S.); (S.J.)
- Correspondence: (Z.Z); (G.W)
| |
Collapse
|
10
|
The Driving Influence of Multi-Dimensional Urbanization on PM 2.5 Concentrations in Africa: New Evidence from Multi-Source Remote Sensing Data, 2000-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179389. [PMID: 34501979 PMCID: PMC8430555 DOI: 10.3390/ijerph18179389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022]
Abstract
Africa’s PM2.5 pollution has become a security hazard, but the understanding of the varying effects of urbanization on driven mechanisms of PM2.5 concentrations under the rapid urbanization remains largely insufficient. Compared with the direct impact, the spillover effect of urbanization on PM2.5 concentrations in adjacent regions was underestimated. Urbanization is highly multi-dimensional phenomenon and previous studies have rarely distinguished the different driving influence and interactions of multi-dimensional urbanization on PM2.5 concentrations in Africa. This study combined grid and administrative units to explore the spatio-temporal change, spatial dependence patterns, and evolution trend of PM2.5 concentrations and multi-dimensional urbanization in Africa. The differential influence and interaction effects of multi-dimensional urbanization on PM2.5 concentrations under Africa’s rapid urbanization was further analyzed. The results show that the positive spatial dependence of PM2.5 concentrations gradually increased over the study period 2000–2018. The areas with PM2.5 concentrations exceeding 35 μg/m3 increased by 2.2%, and 36.78% of the African continent had an increasing trend in Theil–Sen index. Urbanization was found to be the main driving factor causing PM2.5 concentrations changes, and economic urbanization had a stronger influence on air quality than land urbanization or population urbanization. Compared with the direct effect, the spillover effect of urbanization on PM2.5 concentrations in two adjacent regions was stronger, particularly in terms of economic urbanization. The spatial distribution of PM2.5 concentrations resulted from the interaction of multi-dimensional urbanization. The interaction of urbanization of any two different dimensions exhibited a nonlinear enhancement effect on PM2.5 concentrations. Given the differential impact of multi-dimensional urbanization on PM2.5 concentrations inside and outside the region, this research provides support for the cross-regional joint control strategies of air pollution in Africa. The findings also indicate that PM2.5 pollution control should not only focus on urban economic development strategies but should be an optimized integration of multiple mitigation strategies, such as improving residents’ lifestyles, optimizing land spatial structure, and upgrading the industrial structure.
Collapse
|
11
|
Environmental Particulate Matter (PM) Exposure Assessment of Construction Activities Using Low-Cost PM Sensor and Latin Hypercubic Technique. SUSTAINABILITY 2021. [DOI: 10.3390/su13147797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dust generation is generally considered a natural process in construction sites; ergo, workers are exposed to health issues due to fine dust exposure during construction work. The primary activities in the execution of construction work, such as indoor concrete and mortar mixing, are investigated to interrogate and understand the critical high particulate matter concentrations and thus health threats. Two low-cost dust sensors (Sharp GP2Y1014AU0F and Alphasense OPC N2) without implementing control measures to explicitly evaluate, compare and gauge them for these construction activities were utilized. The mean exposures to PM10, PM2.5 and PM1 during both activities were 3522.62, 236.46 and 47.62 µg/m3 and 6762.72, 471.30 and 59.09 µg/m3, respectively. The results show that PM10 and PM2.5 caused during the concrete mixing activity was approximately double compared to the mortar. The Latin Hypercube Sampling method is used to analyze the measurement results and to predict the exposure concentrations. The high dust emission and exposure from mixing activities fail to meet the World Health Organization and Health and Safety Commission standards for environmental exposure. These findings will leverage the integration of low-cost dust sensors with Building Information Modelling (BIM) to formulate a digital twin for automated dust control techniques in the construction site.
Collapse
|
12
|
Cheng CW, Sheu GT, Chou JS, Wang PH, Cheng YC, Lai CY. Fine particulate matter PM 2.5 generated by building demolition increases the malignancy of breast cancer MDA-MB-231 cells. CHEMOSPHERE 2021; 265:129028. [PMID: 33257047 DOI: 10.1016/j.chemosphere.2020.129028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES This study investigates the effects of water-extracted PM2.5 on a triple-negative breast cancer (TNBC) cell line, MDA-MB-231, by sampling suspended particulates around a building demolition site. METHODS PM2.5 particles were obtained using a high-flow TISCH sampler. Water-soluble PM2.5 were extracted by an ultrasonic oscillator and then freeze-dried. The heavy metal components of soluble PM2.5 was analyzed by ICP-MS. Cell viability was evaluated by MTT assay for cells that were exposed to PM2.5 (200, 400 and 600 μg/mL). Wound healing and transwell cell migration and invasion assays were used to measure cell motility and the invasiveness of cancer cells that had been exposed to PM2.5 into a chemo-attractant substance. Interrelated mechanisms of cancer malignancy were analyzed by Western blot analysis. RESULTS Nearby PM2.5 concentrations increased significantly during the deconstruction of buildings, and the Cd, Cu, Pb, Zn and Cr contents of soluble PM2.5 also significantly increased. Following exposure to PM2.5, the survival rate of breast cancer cells was significantly higher than that of the control group. Soluble PM2.5-treated cells had a higher migration capacity. The signaling pathway of FAK/PI3K/AKT proteins was more activated in PM2.5-treated cells than the control group. Increased levels of Aurora B and Bcl-2 were associated with cell proliferation. Elevated levels of cathepsins D, β-catenin, N-cadherin, vimentin and MMP-9 were associated with breast cancer cell metastasis. CONCLUSION Soluble PM2.5 from building demolition may promote/progress in surviving TNBC cells, increasing the malignancy of breast cancer. This study offered evidence of a link between demolition PM2.5 and cancer progression.
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Jing-Shiuan Chou
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan.
| | - Pei-Han Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.
| | - Yu-Chun Cheng
- School of Medicine, Fu Jen Catholic University, Taipei, Taiwan.
| | - Chane-Yu Lai
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Wang S, Cheng S, Qi X. Effect of Urban Greening on Incremental PM 2.5 Concentration During Peak Hours. Front Public Health 2020; 8:551300. [PMID: 33304872 PMCID: PMC7701305 DOI: 10.3389/fpubh.2020.551300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/15/2020] [Indexed: 11/15/2022] Open
Abstract
In China, severe haze is a major public health concern affecting residents' health and well-being. This study used hourly air quality monitoring data from 285 cities in China to analyze the effect of green coverage (GC) and other economic variables on the incremental PM2.5 concentration (ΔPM2.5) during peak hours. To detect possible non-linear and interaction effect between predictive variables, a kernel-based regularized least squares (KRLS) model was used for empirical analysis. The results show that there was considerable heterogeneity between cities regarding marginal effect of GC on ΔPM2.5, which could potentially be explained by different seasons, latitude, urban maintenance expenditure (UE), real GDP per capita (PG), and population density (PD). Also described in this study, in cities with high UE, the growth of GC, PG, and PD always remain a positive impact on mitigation of haze pollution. This shows that government expenditure on urban maintenance can reduce or mitigate the environmental pollution from economic development. In addition, the influence of other urban elements on air quality had also been analyzed so that different combinations of mitigation policies are proposed for different regions in this study to meet the mitigation targets.
Collapse
Affiliation(s)
- Shaogu Wang
- School of Geography, Fujian Normal University, Fuzhou, China
| | - Shunqi Cheng
- School of Geography, Fujian Normal University, Fuzhou, China
| | - Xinhua Qi
- School of Geography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Field Evaluation of the Dust Impacts from Construction Sites on Surrounding Areas: A City Case Study in China. SUSTAINABILITY 2019. [DOI: 10.3390/su11071906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Construction activities generate a large amount of dust and cause significant impacts on air quality of surrounding areas. Thus, revealing the characteristics of construction dust is crucial for finding the way of reducing its effects. To fully uncover the characteristics of construction dust affecting surrounding areas, this study selected seven representative construction sites in Qingyuan city, China as empirical cases for field evaluation. In the experiment, the up-downwind method was adopted to monitor and collect TSP (total suspended particulate), PM10 and PM2.5 (particulate matter ≤10 µm and 2.5 µm in aerodynamic diameter, respectively) concentrations, meteorological data and construction activities of each site for 2 to 3 days and 18 h in a day. The results show that the average daily construction site makes the surrounding areas’ concentration of TSP, PM10 and PM2.5 increase by 42.24%, 19.76% and 16.27%, respectively. The proportion of TSP, PM10 and PM2.5 in building construction dust is 1, 0.239 and 0.116, respectively. The large diameter particulate matter was the major constituent and the distance of its influence was limited. In addition, construction vehicles were one of the main influencing factors for building construction dust. However, building construction dust was not significantly correlated with any single meteorological factor when it did not change too much. Findings of this research can provide a valuable basis for reducing the impact of building construction dust on surrounding areas.
Collapse
|
15
|
Li KL, Lin YC. PM2.5 induced cardiac hypertrophy via CREB/GSK3b/SOS1 pathway and metabolomics alterations. Oncotarget 2018; 9:30748-30760. [PMID: 30112104 PMCID: PMC6089393 DOI: 10.18632/oncotarget.25479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/07/2018] [Indexed: 02/01/2023] Open
Abstract
The particle matter with diameter less 2.5μm (PM2.5) easier to adsorb toxic substance, and interfere with pulmonary gas exchange. In this study, cardioprotective effects of low molecular weight (LMW) fucoidan in cardiac hypertrophy subjects induced by PM2.5 exposure was conducted by measuring QT interval, Blood pressure, cardiac structure, metabolites and proteins expression in different organs. After PM2.5 exposure, increase in blood pressure, abnormal cardiac function (Prolongation of Action Potential Duration and QT Interval), and structral remodeling (cardiac hypertrophy and fibrosis) were recorded. Fucoidan supplement in consecutive 28 days can reduce the damage to myocardial injury caused by PM2.5. Clearance effect of fucoidan in serum, heart, kidney, lung and liver was found due to organic and inorganic compounds reduced SOS1, CREB, GSK3b, and GRB2 protein level were changed under PM2.5 exposure. Whereas, only CREB level was reduced after fucoidan treatment. Metabolic alteration was also determined that PM2.5 severely damage cardiac tissue and compromise its function. After treatment with fucoidan, the cardiac function was significantly recovered. Our finding demonstrated that LMW could enhance the cardiac status of mice with PM2.5 exposures by rescued QT interval prolongation, action potential and cardiac hypertrophy, and cardiac fibrosis decline.
Collapse
Affiliation(s)
- Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
16
|
Gaps between Awareness and Activities on Green Construction in China: A Perspective of On-Site Personnel. SUSTAINABILITY 2018. [DOI: 10.3390/su10072266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Khuzestani RB, Schauer JJ, Shang J, Cai T, Fang D, Wei Y, Zhang L, Zhang Y. Source apportionments of PM 2.5 organic carbon during the elevated pollution episodes in the Ordos region, Inner Mongolia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13159-13172. [PMID: 29492814 DOI: 10.1007/s11356-018-1514-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/08/2018] [Indexed: 05/21/2023]
Abstract
The Ordos region in the southwestern part of Inner Mongolia experiences frequent PM concentrations in excess of the national PM2.5 air quality standards. In order to determine the key sources of PM2.5 contributing to these pollution episodes, the main sources of PM2.5 OC during elevated PM episodes in the Inner Mongolia were analyzed and compared with non-polluted days. This will provide insight to the main sources of particulate matter pollution during the high-pollution episodes and the effective seasonal strategies to control sources of particulate matter during months and with the highest PM concentrations that need to be controlled. The PMF source contributions to OC demonstrated that the industrial/coal combustion (4762.77 ± 1061.54 versus 2726.49 ± 469.75 ng/m3; p < 0.001) and mobile source factors (4651.14 ± 681.82 versus 2605.55 ± 276.50 ng/m3; p value < 0.001) showed greater contributions to the elevated concentrations during the episode. The spatial analysis of secondary organic carbon (SOC) factors, regional biomass burning, and biogenic sources did not show significant difference in the pollution episodes and the non-polluted months. In addition, the bivariate polar plots and CWT maps of the industrial/coal combustion and mobile illustrated a regional long-range transport patterns from the external sources to the study area, however, adjacent areas were mostly controlling the contributions of these factors during the PM elevated episodes. The SOC sources, regional biomass burning, and biogenic sources illustrated a regional long-range transport with similar locations found during the elevated pollution episodes compared to the normal situations.
Collapse
Affiliation(s)
- Reza Bashiri Khuzestani
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Shang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China
| | - Tianqi Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China
| | - Dongqing Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China
| | - Yongjie Wei
- China State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lulu Zhang
- China State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Khuzestani RB, Schauer JJ, Wei Y, Zhang L, Cai T, Zhang Y, Zhang Y. Quantification of the sources of long-range transport of PM 2.5 pollution in the Ordos region, Inner Mongolia, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:1019-1031. [PMID: 28778791 DOI: 10.1016/j.envpol.2017.07.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/16/2017] [Accepted: 07/27/2017] [Indexed: 05/06/2023]
Abstract
The Ordos region of Inner Mongolia is rapidly developing and suffers from poor air quality and unhealthy levels of fine particulate matter. PM2.5 concentrations in the Ordos region were found to exceed 75 μg/m3 on average, annually, with peak pollution days in excess of 350 μg/m3, but local air pollution emissions from surrounding sources are not sufficient to drive pollution levels to these concentrations. The current study was designed to quantify sources of PM2.5 and assess the local source contributions and effects of regional transport on local pollution. The results show that the Ordos region is primarily impacted by regional long-range transport of pollutants from anthropogenic sources located outside of the Inner Mongolia in Shanxi province areas but is also largely affected by regional dust transported from the deserts located in western Inner Mongolia. The analysis proved that approximately 77% of PM2.5 mass is transported long-range from the sites exterior to the study area and contributes 59.32 μg/m3 on average, annually, while the local sources contribute 17.41 μg/m3 (23%) on annual average to the PM2.5 mass in the study area. High spatial correlation coefficients (R2 > 0.6) were observed for most of the factors pointing to the transport of external emissions into the area. Spatial correlation analysis, bivariate polar plots and hybrid trajectory models for industrial and secondary inorganic factors provide evidence for the impact of long-range transport from Shanxi province areas. In addition, the deserts in western Inner Mongolia were found to be the source regions for dust. Finally, our analysis shows that the source of oil combustion and mobile factors are impacted by local sources in the Ordos region; however, some regional impacts from other regions were also observed for mobile source in the area.
Collapse
Affiliation(s)
- Reza Bashiri Khuzestani
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yongjie Wei
- China State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lulu Zhang
- China State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tianqi Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
19
|
Catino S, Tutino M, Ruggieri S, Marinaccio C, Giua R, de Gennaro G, Corsi P, Assennato G, Ribatti D. Angiogenic activity in vivo of the particulate matter (PM10). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:156-161. [PMID: 28258041 DOI: 10.1016/j.ecoenv.2017.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Particulate matter (PM) is the most efficient vehicle for the inhalation and absorption of toxic substances into the body. METHOD The present study was aimed at testing the hypothesis that PM10 samples collected on quartz filters exert an angiogenic activity in vivo in the chick embryo chorioallantoic membrane (CAM) assay. RESULTS When the low, medium, and high PM10 concentrations filters were tested in the CAM assay, an increasing number of microvessels was detectable after 4 days of applications of the filters. Moreover, at histological level, numerous microvessels and a dense inflammatory infiltrate were recognizable in the CAM mesenchyme. CONCLUSION Our data show a clear dose-response relationship between the dose variable (PM10 and Bap) and the outcome variable. So far, the PM10 target value is determined on the basis of regulatory agreements and is not health-based. In addition, the mere gravimetric measure of PM10 cannot be considered a fully reliable surrogate of the overall toxicity of the mixture.
Collapse
Affiliation(s)
- Simona Catino
- Environmental Protection Agency - Apulia, Bari, Italy.
| | - Maria Tutino
- Environmental Protection Agency - Apulia, Bari, Italy.
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Christian Marinaccio
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Roberto Giua
- Environmental Protection Agency - Apulia, Bari, Italy.
| | | | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | | | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
20
|
Kumar P, Gulia S, Harrison RM, Khare M. The influence of odd-even car trial on fine and coarse particles in Delhi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:20-30. [PMID: 28343101 DOI: 10.1016/j.envpol.2017.03.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 05/02/2023]
Abstract
The odd-even car trial scheme, which reduced car traffic between 08.00 and 20.00 h daily, was applied from 1 to 15 January 2016 (winter scheme, WS) and 15-30 April 2016 (summer scheme, SS). The daily average PM2.5 and PM10 exceeded national standards, with highest concentrations (313 μg m-3 and 639 μg m-3, respectively) during winter and lowest (53 μg m-3 and 130 μg m-3) during the monsoon (June-August). PM concentrations during the trials can be interpreted either as reduced or increased, depending on the periods used for comparison purposes. For example, hourly average net PM2.5 and PM10 (after subtracting the baseline concentrations) reduced by up to 74% during the majority (after 1100 h) of trial hours compared with the corresponding hours during the previous year. Conversely, daily average PM2.5 and PM10 were higher by up to 3-times during the trial periods when compared with the pre-trial days. A careful analysis of the data shows that the trials generated cleaner air for certain hours of the day but the persistence of overnight emissions from heavy goods vehicles into the morning odd-even hours (0800-1100 h) made them probably ineffective at this time. Any further trial will need to be planned very carefully if an effect due to traffic alone is to be differentiated from the larger effect caused by changes in meteorology and especially wind direction.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Environmental Flow (EnFlo) Research Centre, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Sunil Gulia
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Presently at: CSIR-National Environmental Engineering and Research Institute, Delhi Zonal Centre, India
| | - Roy M Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Department of Environmental Sciences/Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mukesh Khare
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
21
|
Khanum F, Chaudhry MN, Kumar P. Characterization of five-year observation data of fine particulate matter in the metropolitan area of Lahore. AIR QUALITY, ATMOSPHERE, & HEALTH 2017; 10:725-736. [PMID: 28936270 PMCID: PMC5581825 DOI: 10.1007/s11869-017-0464-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 05/06/2023]
Abstract
This study aims to assess the long-term trend of fine particles (PM2.5; ≤2.5 μm) at two urban sites of Lahore during 2007-2011. These sites represent two distinct areas: commercial (Townhall) and residential cum industrial (Township). The highest daily mean concentrations of PM2.5 were noted as 389 and 354 μg m-3 at the Townhall and Township sites, respectively. As expected, the annual seasonal mean of PM2.5 was about 53 and 101% higher during winter compared with the summer and monsoon/post-monsoon seasons, respectively. On contrary to many observations seen in developing cities, the annual mean PM2.5 during the weekends was higher than weekdays at both monitoring sites. For example, these were 100 (142) and 142 μg m-3 (148) during the weekdays (weekends) at the Townhall and Township sites, respectively. The regression analysis showed a significant positive correlation of PM2.5 with SO2, NO2 and CO as opposed to a negative correlation with O3. The bivariate polar plots suggested a much higher influence of localized sources (e.g., road vehicles) at the Townhall site as opposed to industrial sources affecting the concentrations at the Township site. The imageries from the MODIS Aqua/Terra indicated long-range transport of PM2.5 from India to Pakistan during February to October whereas from Pakistan to India during November to January. This study provides important results in the form of multiscale relationship of PM2.5 with its sources and precursors, which are important to assess the effectiveness of pollution control mitigation strategies in Lahore and similar cities elsewhere. Graphical abstract.
Collapse
Affiliation(s)
- Fatima Khanum
- College of Earth and Environmental Sciences, The University of Punjab, Lahore, Pakistan
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | | | - Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH UK
- Environmental Flow (EnFlo) Research Centre, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH UK
| |
Collapse
|
22
|
Gautam S, Yadav A, Tsai CJ, Kumar P. A review on recent progress in observations, sources, classification and regulations of PM 2.5 in Asian environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21165-21175. [PMID: 27581048 DOI: 10.1007/s11356-016-7515-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/23/2016] [Indexed: 04/15/2023]
Abstract
Natural and human activities generate a significant amount of PM2.5 (particles ≤2.5 μm in aerodynamic diameter) into the surrounding atmospheric environments. Because of their small size, they can remain suspended for a relatively longer time in the air than coarse particles and thus can travel long distances in the atmosphere. PM2.5 is one of the key indicators of pollution and known to cause numerous types of respiratory and lung-related diseases. Due to poor implementation of regulations and a time lag in introducing the vehicle technology, levels of PM2.5 in most Asian cities are much worse than those in European environments. Dedicated reviews on understanding the characteristics of PM2.5 in Asian urban environments are currently missing but much needed. In order to fill the existing gaps in the literature, the aim of this review article is to describe dominating sources and their classification, followed by current status and health impact of PM2.5, in Asian countries. Further objectives include a critical synthesis of the topics such as secondary and tertiary aerosol formation, chemical composition, monitoring and modelling methods, source apportionment, emissions and exposure impacts. The review concludes with the synthesis of regulatory guidelines and future perspectives for PM2.5 in Asian countries. A critical synthesis of literature suggests a lack of exposure and monitoring studies to inform personal exposure in the household and rural areas of Asian environments.
Collapse
Affiliation(s)
- Sneha Gautam
- Institute of Environmental Engineering, National Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Ankit Yadav
- The INCLEN Trust International, Okhla Industrial Area, Phase-I, New Delhi, 110020, India
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering, National Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan.
| | - Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
- Environmental Flow (EnFlo) Research Centre, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|