1
|
Nazeer SS, Venkataraman RK, Jayasree RS, Bayry J. Infrared Spectroscopy for Rapid Triage of Cancer Using Blood Derivatives: A Reality Check. Anal Chem 2024; 96:957-965. [PMID: 38164878 DOI: 10.1021/acs.analchem.3c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Infrared (IR) spectroscopy of serum/plasma represents an alluring molecular diagnostic tool, especially for cancer, as it can provide a molecular fingerprint of clinical samples based on vibrational modes of chemical bonds. However, despite the superior performance, the routine adoption of this technique for clinical settings has remained elusive. This is due to the potential confounding factors that are often overlooked and pose a significant barrier to clinical translation. In this Perspective, we summarize the concerns associated with various confounding factors, such as fluid sampling, optical effects, hemolysis, abnormal cardiovascular and/or hepatic functions, infections, alcoholism, diet style, age, and gender of a patient or normal control cohort, and improper selection of numerical methods that ultimately would lead to improper spectral diagnosis. We also propose some precautionary measures to overcome the challenges associated with these confounding factors.
Collapse
Affiliation(s)
- Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram, Kerala 695547, India
| | - Ravi Kumar Venkataraman
- Ultrafast Laser Spectroscopy Lab, Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
2
|
De Santis E, Faruqui N, Russell CT, Noble JE, Kepiro IE, Hammond K, Tsalenchuk M, Ryadnov EM, Wolna M, Frogley MD, Price CJ, Barbaric I, Cinque G, Ryadnov MG. Hyperspectral Mapping of Human Primary and Stem Cells at Cell-Matrix Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2154-2165. [PMID: 38181419 DOI: 10.1021/acsami.3c17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.
Collapse
Affiliation(s)
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Craig T Russell
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K
| | - James E Noble
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, U.K
| | - Eugeni M Ryadnov
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - Magda Wolna
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Mark D Frogley
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Ivana Barbaric
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Gianfelice Cinque
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
3
|
Özsavran M, Kurt A, Ayyıldız TK, Gül Z. "A Life Slips Through Our Fingers" Experiences of Nurses Working in Pediatric Intensive Care Units About Children's Death: A Qualitative Study. OMEGA-JOURNAL OF DEATH AND DYING 2024:302228231225885. [PMID: 38166543 DOI: 10.1177/00302228231225885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Caring for a dying child can be an experience full of all kinds of negative emotions, pain and stress for the pediatric nurse. In this study, which was carried out in Turkey, we aimed to determine how nurses working in a pediatric intensive care unit remembered and made sense of their experiences regarding children's deaths. In-depth interviews were held with 13 nurses. The data were analyzed using the content analysis method. Three themes were identified. These were (1) Personal effects of death, (2) Difficulties in care, and (3) Coping with death. It was clear that the nurses were traumatised by their exposure to infant deaths. The findings showed that nurses experienced regret, fatigue and posttraumatic stress disorder. In addition, it was determined that nurses should be supported to cope with child deaths, which is a complicated process involving the child and the family, especially emotionally. Moreover, providing institutional support to nurses and referring them to cognitive-behavioral therapies may make it easier for them to cope with the emotional burden they carry, as well as the burnout they experience.
Collapse
Affiliation(s)
- Musa Özsavran
- Ahmet Erdogan Vocational School of Health Services, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Aylin Kurt
- Faculty of Health Sciences, Bartın University, Bartın, Turkey
| | - Tülay Kuzlu Ayyıldız
- Faculty of Health Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Zeynep Gül
- Institute of Health Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
4
|
Tao Y, Liu T, Li P, Lv A, Zhuang K, Ni C. Self-management experiences of haemodialysis patients with self-regulatory fatigue: A phenomenological study. J Adv Nurs 2023; 79:2250-2258. [PMID: 36794672 DOI: 10.1111/jan.15578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
AIM To understand the real experiences of self-management in haemodialysis patients with self-regulatory fatigue, and to explore the influencing factors and coping strategies for patients with decreased self-management. DESIGN A qualitative study was carried out using the phenomenological analysis method. METHODS From 5 January to 25 February, 2022, semi-structured interviews were conducted with 18 haemodialysis patients in Lanzhou, China. Thematic analysis of the data was performed using the NVivo 12 software based on the 7 steps of Colaizzi's method. The study reporting followed the SRQR checklist. RESULTS Five themes and 13 sub-themes were identified. The main themes were difficulties in fluid restrictions and emotional management, hard to adhere to long-term self-management, uncertainty about self-management, influencing factors are complex and diverse and coping strategies should be further improved. CONCLUSION This study revealed the difficulties, uncertainty, influencing facts and coping strategies of self-management among haemodialysis patients with self-regulatory fatigue. A targeted program should be developed and implemented according to the characteristics of patients to reduce the level of self-regulatory fatigue and improve self-management. IMPACT Self-regulatory fatigue has a significant impact on the self-management behaviour of haemodialysis patients. Understanding the real experiences of self-management in haemodialysis patients with self-regulatory fatigue enables medical staff to correctly identify the occurrence of self-regulatory fatigue in time and help patients adopt positive coping strategies to keep effective self-management behaviour. PATIENT OR PUBLIC CONTRIBUTION Haemodialysis patients who met the inclusion criteria were recruited to participate in the study from a blood purification centre in Lanzhou, China.
Collapse
Affiliation(s)
- Yuxiu Tao
- School of Nursing, Air Force Medical University, Xi'an, China.,Department of Joint Surgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Tongcun Liu
- Blood Purification Center, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Ping Li
- School of Nursing, Air Force Medical University, Xi'an, China
| | - Aili Lv
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Kaipeng Zhuang
- Department of Joint Surgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, China
| | - Chunping Ni
- School of Nursing, Air Force Medical University, Xi'an, China
| |
Collapse
|
5
|
Guselnikova O, Nugraha AS, Na J, Postnikov P, Kim HJ, Plotnikov E, Yamauchi Y. Surface Filtration in Mesoporous Au Films Decorated by Ag Nanoparticles for Solving SERS Sensing Small Molecules in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41629-41639. [PMID: 36043945 DOI: 10.1021/acsami.2c12804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For surface-enhanced Raman spectroscopy (SERS) sensing of small molecules in the presence of living cells, biofouling and blocking of plasmonic centers are key challenges. Here, we have developed a mesoporous Au (AuM) film coated with a Ag nanoparticles (NPs) as a plasmonic sensor (AuM@Ag) to analyze aromatic thiols, which is an example of a small molecule, in the presence of a living cell strain (e.g., MDA-MB-231) as a model living system. The resulting AuM@Ag provides 0.1 nM sensitivity and high reproducibility for thiols sensing. Simultaneously, the AuM@Ag film filters large biomolecules, preventing Raman signals from overlapping produced by large biomolecules. After analysis, the AuM@Ag film undergoes recycling by the full dissolution of the Ag-thiol layer and removal of thiols from AuM. Furthermore, fresh AgNPs are formed for further SERS analysis, which circumvents the Ag oxidation issue. The ease of the AgNPs deposition allows up to 12 cycles of on-demand recycling and sensing even after utilization as a sensor in multicomponent media without enhancement and sensitivity loss. The reported mesoporous film with surface filtering ability and prominent recycling procedure promises to offer a new strategy for the detection of various small molecules in the presence of living cells.
Collapse
Affiliation(s)
- Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Zhou S, Wei L, Hua W, He X, Chen J. A qualitative study of phenomenology of perspectives of student nurses: experience of death in clinical practice. BMC Nurs 2022; 21:74. [PMID: 35351123 PMCID: PMC8966360 DOI: 10.1186/s12912-022-00846-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Aim To describe the experiences of student nurses in confronting the death of their patients, and to understand how they cope with these events and to what extent there are unmet needs that can be addressed in their trainings. Methods Semi-structured interview method was used to collect data from Chinese nursing students and then Colaizzi’s seven-step analysis method was applied to identify recurrent themes in their responses to patient deaths. We listened the tape repeatedly combined with observations of their non-verbal behaviors, then transcribed them with emotional resonance, and entered them into Nvivo. After that, we extracted repeated and significant statements from the transcriptions, coded, then clustered codes into sub-themes and themes which were identified by the comparation with transcriptions and re-confirmation with our participants. Results After confirmation from the interviewees, five themes emerged: emotional experience, challenge, growth, coping and support. Supplementary Information The online version contains supplementary material available at 10.1186/s12912-022-00846-w.
Collapse
Affiliation(s)
- ShiShuang Zhou
- Department of Nursing Aministration, School of Nursing, Army Medical University, Chongqing, China
| | - LiZhen Wei
- XiangYa Nursing School of Central South University, 172 TongZiPou Rd, Yuelu District, Changsha, Hunan, 410000, China
| | - Wei Hua
- JiangNing Hospital, Nanjing, China
| | - XioaChong He
- Department of Nursing Aministration, School of Nursing, Army Medical University, Chongqing, China.
| | - Jia Chen
- XiangYa Nursing School of Central South University, 172 TongZiPou Rd, Yuelu District, Changsha, Hunan, 410000, China.
| |
Collapse
|
7
|
Vannocci T, Quaroni L, de Riso A, Milordini G, Wolna M, Cinque G, Pastore A. Label-Free, Real-Time Measurement of Metabolism of Adherent and Suspended Single Cells by In-Cell Fourier Transform Infrared Microspectroscopy. Int J Mol Sci 2021; 22:ijms221910742. [PMID: 34639083 PMCID: PMC8509135 DOI: 10.3390/ijms221910742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
We used infrared (IR) microscopy to monitor in real-time the metabolic turnover of individual mammalian cells in morphologically different states. By relying on the intrinsic absorption of mid-IR light by molecular components, we could discriminate the metabolism of adherent cells as compared to suspended cells. We identified major biochemical differences between the two cellular states, whereby only adherent cells appeared to rely heavily on glycolytic turnover and lactic fermentation. We also report spectroscopic variations that appear as spectral oscillations in the IR domain, observed only when using synchrotron infrared radiation. We propose that this effect could be used as a reporter of the cellular conditions. Our results are instrumental in establishing IR microscopy as a label-free method for real-time metabolic studies of individual cells in different morphological states, and in more complex cellular ensembles.
Collapse
Affiliation(s)
- Tommaso Vannocci
- UK Dementia Research Institute at The Wohl Institute of King’s College London, London SE5 9RT, UK; (T.V.); (G.M.)
| | - Luca Quaroni
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, 30-386 Kraków, Poland
- Correspondence: (L.Q.); (A.P.)
| | - Antonio de Riso
- Evotec (UK) Ltd., Dorothy Crowfoot Hodgkin Campus, Milton Park, Abingdon OX14 4RZ, UK;
| | - Giulia Milordini
- UK Dementia Research Institute at The Wohl Institute of King’s College London, London SE5 9RT, UK; (T.V.); (G.M.)
| | - Magda Wolna
- MIRIAM beamline B22, Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK; (M.W.); (G.C.)
| | - Gianfelice Cinque
- MIRIAM beamline B22, Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK; (M.W.); (G.C.)
| | - Annalisa Pastore
- UK Dementia Research Institute at The Wohl Institute of King’s College London, London SE5 9RT, UK; (T.V.); (G.M.)
- Correspondence: (L.Q.); (A.P.)
| |
Collapse
|
8
|
Ressaissi A, Pacheco R, Serralheiro MLM. Molecular-level changes induced by hydroxycinnamic acid derivatives in HepG2 cell line: Comparison with pravastatin. Life Sci 2021; 283:119846. [PMID: 34324915 DOI: 10.1016/j.lfs.2021.119846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Hydroxycinnamic acid derivatives are an important class of polyphenols found in fruits, vegetables, and medicinal plants and widely consumed in human diet. In the present work, alterations of HepG2 cells biochemical profile under the effect of four hydroxycinnamic acid derivatives (caffeic acid, m-coumaric acid, chlorogenic acid and rosmarinic acid) relatively to the effect of pravastatin, a drug often prescribed to inhibit HMG-CoA reductase enzyme, the regulator enzyme in the cholesterol biosynthesis pathway, were reported. The application of FTIR spectroscopy in combination with multivariate analysis by PCA showed a similarity between pravastatin and the four hydroxycinnamic acid derivatives in metabolite profile modification expressed by various changes in proteins region, the phosphate region which mainly corresponds to nucleic acids as well as in lipids regions. FTIR structural analysis in the amide I region, using resolution enhancement methods, such as second derivative and amide I deconvolution method, revealed significant decrease in α-helix/random coil and intermolecular β-sheet decreased while intramolecular β-sheet in treated cells showed an increase. It was also noticed that the intracellular cholesterol as well as esterified ingredients such as cholesterol esters in the cell membrane decreased. Moreover, principal component analysis (PCA) of the spectral data showed that the compounds and pravastatin were well separated from untreated cells showing a different mode of action on HepG2 treated cells for each compound.
Collapse
Affiliation(s)
- Asma Ressaissi
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| | - Rita Pacheco
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal; Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Av. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal.
| | - Maria Luísa M Serralheiro
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal; Universidade de Lisboa, Faculdade de Ciências, Departamento de Química e Bioquímica, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
9
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Clède S, Sandt C, Dumas P, Policar C. Monitoring the Kinetics of the Cellular Uptake of a Metal Carbonyl Conjugated with a Lipidic Moiety in Living Cells Using Synchrotron Infrared Spectromicroscopy. APPLIED SPECTROSCOPY 2020; 74:63-71. [PMID: 31617373 DOI: 10.1177/0003702819877260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Presented here is the exploitation of synchrotron infrared spectromicroscopy to evaluate the feasibility of monitoring the cellular uptake of rhenium-tris-carbonyl-tagged (Re(CO)3) lipophilic chains in living cells. To this aim, an in-house thermostated microfluidic device was used to limit water absorption while keeping cells alive. Indeed, cells showed a high survival rate in the microfluidic device over the course of the experiment, proving the short-term biocompatibility of the device. We recorded spectra of single, living, fully hydrated breast cancer MDA-MB231 cells and could follow the penetration of the rhenium complexes for up to 2 h. Despite the strong variations observed in the uptake kinetics between individual cells, the Re(CO)3 complex was traced inside the cells at low concentration and shown to enter them on the hour time scale by active transport.
Collapse
Affiliation(s)
- Sylvain Clède
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| | - Christophe Sandt
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Paul Dumas
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| |
Collapse
|
11
|
Pupeza I, Huber M, Trubetskov M, Schweinberger W, Hussain SA, Hofer C, Fritsch K, Poetzlberger M, Vamos L, Fill E, Amotchkina T, Kepesidis KV, Apolonski A, Karpowicz N, Pervak V, Pronin O, Fleischmann F, Azzeer A, Žigman M, Krausz F. Field-resolved infrared spectroscopy of biological systems. Nature 2020; 577:52-59. [PMID: 31894146 DOI: 10.1038/s41586-019-1850-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1-8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9-12, and this field is specific to the sample's molecular composition. Employing electro-optic sampling10,12-15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.
Collapse
Affiliation(s)
- Ioachim Pupeza
- Ludwig Maximilians University München, Garching, Germany. .,Max Planck Institute of Quantum Optics, Garching, Germany.
| | - Marinus Huber
- Ludwig Maximilians University München, Garching, Germany.,Max Planck Institute of Quantum Optics, Garching, Germany
| | | | - Wolfgang Schweinberger
- Ludwig Maximilians University München, Garching, Germany.,King Saud University, Department of Physics and Astronomy, Riyadh, Saudi Arabia
| | - Syed A Hussain
- Ludwig Maximilians University München, Garching, Germany.,Max Planck Institute of Quantum Optics, Garching, Germany
| | - Christina Hofer
- Ludwig Maximilians University München, Garching, Germany.,Max Planck Institute of Quantum Optics, Garching, Germany
| | - Kilian Fritsch
- Ludwig Maximilians University München, Garching, Germany
| | | | - Lenard Vamos
- Max Planck Institute of Quantum Optics, Garching, Germany
| | - Ernst Fill
- Ludwig Maximilians University München, Garching, Germany
| | | | | | | | | | - Vladimir Pervak
- Ludwig Maximilians University München, Garching, Germany.,Max Planck Institute of Quantum Optics, Garching, Germany
| | - Oleg Pronin
- Ludwig Maximilians University München, Garching, Germany.,Max Planck Institute of Quantum Optics, Garching, Germany
| | - Frank Fleischmann
- Max Planck Institute of Quantum Optics, Garching, Germany.,Center for Molecular Fingerprinting, Budapest, Hungary
| | - Abdallah Azzeer
- King Saud University, Department of Physics and Astronomy, Riyadh, Saudi Arabia
| | - Mihaela Žigman
- Ludwig Maximilians University München, Garching, Germany.,Max Planck Institute of Quantum Optics, Garching, Germany.,Center for Molecular Fingerprinting, Budapest, Hungary
| | - Ferenc Krausz
- Ludwig Maximilians University München, Garching, Germany. .,Max Planck Institute of Quantum Optics, Garching, Germany. .,Center for Molecular Fingerprinting, Budapest, Hungary.
| |
Collapse
|
12
|
Domenici F, Capocefalo A, Brasili F, Bedini A, Giliberti C, Palomba R, Silvestri I, Scarpa S, Morrone S, Paradossi G, Frogley MD, Cinque G. Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level. Sci Rep 2019; 9:11845. [PMID: 31413286 PMCID: PMC6694135 DOI: 10.1038/s41598-019-48292-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation Fourier Transform Infrared micro-spectroscopy (SR-microFTIR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR-microFTIR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. Our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies.
Collapse
Affiliation(s)
- F Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy.
| | - A Capocefalo
- Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - F Brasili
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy.,Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - A Bedini
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - C Giliberti
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - R Palomba
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - I Silvestri
- Dipartimento di Medicina Molecolare, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - S Scarpa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - S Morrone
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - G Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - M D Frogley
- MIRIAM beamline B22, Diamond Light Source, Harwell Campus, Chilton-Didcot, OX11 0DE, UK
| | - G Cinque
- MIRIAM beamline B22, Diamond Light Source, Harwell Campus, Chilton-Didcot, OX11 0DE, UK
| |
Collapse
|
13
|
Doherty J, Raoof A, Hussain A, Wolna M, Cinque G, Brown M, Gardner P, Denbigh J. Live single cell analysis using synchrotron FTIR microspectroscopy: development of a simple dynamic flow system for prolonged sample viability. Analyst 2019; 144:997-1007. [PMID: 30403210 DOI: 10.1039/c8an01566j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-β transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction.
Collapse
Affiliation(s)
- James Doherty
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Chan KLA, Fale PLV, Atharawi A, Wehbe K, Cinque G. Subcellular mapping of living cells via synchrotron microFTIR and ZnS hemispheres. Anal Bioanal Chem 2018; 410:6477-6487. [PMID: 30032447 PMCID: PMC6132686 DOI: 10.1007/s00216-018-1245-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022]
Abstract
FTIR imaging is a label-free, non-destructive method valuably exploited in the study of the biological process in living cells. However, the long wavelength/low spatial resolution and the strong absorbance of water are still key constrains in the application of IR microscopy ex vivo. In this work, a new retrofit approach based on the use of ZnS hemispheres is introduced to significantly improve the spatial resolution on live cell FTIR imaging. By means of two high refractive index domes sandwiching the sample, a lateral resolution close to 2.2 μm at 6 μm wavelength has been achieved, i.e. below the theoretical diffraction limit in air and more than twice the improvement (to ~λ/2.7) from our previous attempt using CaF2 lenses. The ZnS domes also allowed an extended spectral range to 950 cm−1, in contrast to the cut-off at 1050 cm−1 using CaF2. In combination with synchrotron radiation source, microFTIR provides an improved signal-to-noise ratio through the circa 12 μm thin layer of medium, thus allowing detailed distribution of lipids, protein and nucleic acid in the surround of the nucleus of single living cells. Endoplasmic reticula were clearly shown based on the lipid ν(CH) and ν(C=O) bands, while the DNA was imaged based on the ν(PO2−) band highlighting the nucleus region. This work has also included a demonstration of drug (doxorubicin) in cell measurement to highlight the potential of this approach. Graphical abstract ![]()
Collapse
Affiliation(s)
- K L Andrew Chan
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Pedro L V Fale
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King's College London, London, SE1 9NH, UK.,Center of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Ali Atharawi
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Katia Wehbe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| |
Collapse
|
16
|
Doherty J, Zhang Z, Wehbe K, Cinque G, Gardner P, Denbigh J. Increased optical pathlength through aqueous media for the infrared microanalysis of live cells. Anal Bioanal Chem 2018; 410:5779-5789. [PMID: 29968104 PMCID: PMC6096700 DOI: 10.1007/s00216-018-1188-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsically yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples. There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra from water layers of 10 and 12 μm and demonstrate that sufficient biological detail is retained to separate spectra of live cells based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation between control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures. Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1 based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of action of each agent. Graphical abstract ![]()
Collapse
Affiliation(s)
- James Doherty
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Zhe Zhang
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Katia Wehbe
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Gianfelice Cinque
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Peter Gardner
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. .,School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Joanna Denbigh
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
17
|
Vannocci T, Notario Manzano R, Beccalli O, Bettegazzi B, Grohovaz F, Cinque G, de Riso A, Quaroni L, Codazzi F, Pastore A. Adding a temporal dimension to the study of Friedreich's ataxia: the effect of frataxin overexpression in a human cell model. Dis Model Mech 2018; 11:dmm032706. [PMID: 29794127 PMCID: PMC6031361 DOI: 10.1242/dmm.032706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/08/2018] [Indexed: 12/27/2022] Open
Abstract
The neurodegenerative disease Friedreich's ataxia is caused by lower than normal levels of frataxin, an important protein involved in iron-sulfur (Fe-S) cluster biogenesis. An important step in designing strategies to treat this disease is to understand whether increasing the frataxin levels by gene therapy would simply be beneficial or detrimental, because previous studies, mostly based on animal models, have reported conflicting results. Here, we have exploited an inducible model, which we developed using the CRISPR/Cas9 methodology, to study the effects of frataxin overexpression in human cells and monitor how the system recovers after overexpression. Using new tools, which range from high-throughput microscopy to in cell infrared, we prove that overexpression of the frataxin gene affects the cellular metabolism. It also leads to a significant increase of oxidative stress and labile iron pool levels. These cellular alterations are similar to those observed when the gene is partly silenced, as occurs in Friedreich's ataxia patients. Our data suggest that the levels of frataxin must be tightly regulated and fine-tuned, with any imbalance leading to oxidative stress and toxicity.
Collapse
Affiliation(s)
- Tommaso Vannocci
- Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Roberto Notario Manzano
- Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Ombretta Beccalli
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Bettegazzi
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Grohovaz
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianfelice Cinque
- Department of Physical Chemistry and Electrochemistry, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | | | - Luca Quaroni
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, PL-30387, Kraków, Poland
| | - Franca Codazzi
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annalisa Pastore
- Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
- Molecular Medicine Department, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
18
|
Pucetaite M, Velicka M, Urboniene V, Ceponkus J, Bandzeviciute R, Jankevicius F, Zelvys A, Sablinskas V, Steiner G. Rapid intra-operative diagnosis of kidney cancer by attenuated total reflection infrared spectroscopy of tissue smears. JOURNAL OF BIOPHOTONICS 2018; 11:e201700260. [PMID: 29316381 DOI: 10.1002/jbio.201700260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/06/2018] [Indexed: 05/13/2023]
Abstract
Herein, a technique to analyze air-dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR-IR) spectroscopy is presented. Spectral tumor markers-absorption bands of glycogen-are identified in the ATR-IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo-sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze-thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real-time intra-operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors.
Collapse
Affiliation(s)
- Milda Pucetaite
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | - Martynas Velicka
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | - Vidita Urboniene
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | - Justinas Ceponkus
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | - Rimante Bandzeviciute
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | - Feliksas Jankevicius
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Lithuanian National Cancer Institute, Vilnius, Lithuania
| | - Arunas Zelvys
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Valdas Sablinskas
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | - Gerald Steiner
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
- Faculty of Medicine Carl Gustav Carus, Clinical Sensoring and Monitoring, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
19
|
Wrobel TP, Bhargava R. Infrared Spectroscopic Imaging Advances as an Analytical Technology for Biomedical Sciences. Anal Chem 2018; 90:1444-1463. [PMID: 29281255 PMCID: PMC6421863 DOI: 10.1021/acs.analchem.7b05330] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tomasz P. Wrobel
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Quaroni L, Pogoda K, Wiltowska-Zuber J, Kwiatek WM. Mid-infrared spectroscopy and microscopy of subcellular structures in eukaryotic cells with atomic force microscopy – infrared spectroscopy. RSC Adv 2018; 8:2786-2794. [PMID: 35541450 PMCID: PMC9077331 DOI: 10.1039/c7ra10240b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/25/2019] [Accepted: 12/21/2017] [Indexed: 01/30/2023] Open
Abstract
Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit. We show that the high spatial resolution can be used to perform spectroscopic and imaging studies at the subcellular level in fixed eukaryotic cells. We collect AFM-IR images of subcellular structures that include lipid droplets, vesicles and cytoskeletal filaments, by relying on the intrinsic contrast from IR light absorption. We also obtain AFM-IR absorption spectra of individual subcellular structures. Most spectra show features that are recognizable in the IR absorption spectra of cells and tissue obtained with FTIR technology, including absorption bands characteristic of phospholipids and polypeptides. The quality of the spectra and of the images opens the way to structure and composition studies at the subcellular level using mid-IR absorption spectroscopy. Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit.![]()
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Katarzyna Pogoda
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Joanna Wiltowska-Zuber
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Wojciech M. Kwiatek
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| |
Collapse
|
21
|
Smolina M, Goormaghtigh E. Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures. Analyst 2018; 143:2520-2530. [DOI: 10.1039/c8an00145f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene expression patterns and FTIR spectral data are strongly correlated. Both identified the genotypes and phenotypes of breast cancer cell lines.
Collapse
Affiliation(s)
- Margarita Smolina
- Laboratory for the Structure and Function of Biological Membranes
- Center for Structural Biology and Bioinformatics
- Université Libre de Bruxelles
- Brussels
- Belgium
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes
- Center for Structural Biology and Bioinformatics
- Université Libre de Bruxelles
- Brussels
- Belgium
| |
Collapse
|