1
|
Sakai K, Miura S, Teshima TF, Goto T, Takeuchi S, Yamaguchi M. Small-artery-mimicking multi-layered 3D co-culture in a self-folding porous graphene-based film. NANOSCALE HORIZONS 2023; 8:1529-1536. [PMID: 37782508 DOI: 10.1039/d3nh00304c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In vitro vessel-mimicking models have been spotlighted as a powerful tool for investigating cellular behaviours in vascular development and diseases. However, it is still challenging to create micro-scale tubular tissues while mimicking the structural features of small arteries. Here, we propose a 3D culture model of small vascular tissue using a self-folding graphene-based porous film. Vascular endothelial cells were encapsulated within the self-folding film to create a cellular construct with a controlled curvature radius ranging from 10 to 100 μm, which is comparable to the size of a human arteriole. Additionally, vascular endothelial cells and smooth muscle cells were separately co-cultured on the inner and outer surfaces of the folded film, respectively. The porous wall worked as a permeable barrier between them, affecting the cell-cell communications like the extracellular layer in the artery wall. Thus, the culture model recapitulates the structural features of a small artery and will help us better understand intercellular communications at the artery wall in physiological and pathological conditions.
Collapse
Affiliation(s)
- Koji Sakai
- NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
| | - Shigenori Miura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tetsuhiko F Teshima
- Medical and Health Informatics Laboratories, NTT Research Incorporated, 940 Stewart Dr, Sunnyvale, CA, 94085, USA
| | - Toichiro Goto
- NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masumi Yamaguchi
- NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
| |
Collapse
|
2
|
Zhao Q, Li C, Shum HC, Du X. Shape-adaptable biodevices for wearable and implantable applications. LAB ON A CHIP 2020; 20:4321-4341. [PMID: 33232418 DOI: 10.1039/d0lc00569j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emerging wearable and implantable biodevices have been significantly revolutionizing the diagnosis and treatment of disease. However, the geometrical mismatch between tissues and biodevices remains a great challenge for achieving optimal performances and functionalities for biodevices. Shape-adaptable biodevices enabling active compliance with human body tissues offer promising opportunities for addressing the challenge through programming their geometries on demand. This article reviews the design principles and control strategies for shape-adaptable biodevices with programmable shapes and actively compliant capabilities, which have offered innovative diagnostic/therapeutic tools and facilitated a variety of wearable and implantable applications. The state-of-the-art progress in applications of shape-adaptable biodevices in the fields of smart textiles, wound care, healthcare monitoring, drug and cell delivery, tissue repair and regeneration, nerve stimulation and recording, and biopsy and surgery, is highlighted. Despite the remarkable advances already made, shape-adaptable biodevices still confront many challenges on the road toward the clinic, such as enhanced intelligence for actively sensing and operating in response to physiological environments. Next-generation paradigms will shed light on future directions for extending the breadth and performance of shape-adaptable biodevices for wearable and implantable applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035 China.
| | | | | | | |
Collapse
|
3
|
Jin Q, Bhatta A, Pagaduan JV, Chen X, West-Foyle H, Liu J, Hou A, Berkowitz D, Kuo SC, Askin FB, Nguyen TD, Gracias DH, Romer LH. Biomimetic human small muscular pulmonary arteries. SCIENCE ADVANCES 2020; 6:eaaz2598. [PMID: 32232160 PMCID: PMC7096158 DOI: 10.1126/sciadv.aaz2598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
Changes in structure and function of small muscular arteries play a major role in the pathophysiology of pulmonary hypertension, a burgeoning public health challenge. Improved anatomically mimetic in vitro models of these microvessels are urgently needed because nonhuman vessels and previous models do not accurately recapitulate the microenvironment and architecture of the human microvascular wall. Here, we describe parallel biofabrication of photopatterned self-rolled biomimetic pulmonary arterial microvessels of tunable size and infrastructure. These microvessels feature anatomically accurate layering and patterning of aligned human smooth muscle cells, extracellular matrix, and endothelial cells and exhibit notable increases in endothelial longevity and nitric oxide production. Computational image processing yielded high-resolution 3D perspectives of cells and proteins. Our studies provide a new paradigm for engineering multicellular tissues with precise 3D spatial positioning of multiple constituents in planar moieties, providing a biomimetic platform for investigation of microvascular pathobiology in human disease.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anil Bhatta
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jayson V. Pagaduan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xing Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hoku West-Foyle
- Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiayu Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Annie Hou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot C. Kuo
- Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederic B. Askin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Corresponding author. (D.H.G.); (L.H.R.)
| | - Lewis H. Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. (D.H.G.); (L.H.R.)
| |
Collapse
|
4
|
Sakai K, Teshima TF, Nakashima H, Ueno Y. Graphene-based neuron encapsulation with controlled axonal outgrowth. NANOSCALE 2019; 11:13249-13259. [PMID: 31149690 DOI: 10.1039/c9nr04165f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neuronal constructs with tuneable 3D geometry can contribute greatly to the construction of brain-like functional tissues for transplantable grafts and robust experimental models. In this study, we propose a self-folding graphene/polymer bilayer film that forms a micro-roll for neuron encapsulation, and highlight the importance of employing pores on the micro-roll to allow neurons to interact with their surroundings. The micro-patterns and varied thicknesses of the bilayer provide control over the 3D geometries of the micro-roll. The pores facilitate the diffusion of reagents, resulting in the adequate loading of probes for imaging and the successful stimulation of the encapsulated neurons. Moreover, the encapsulated neurons inside the micro-roll are functionally integrated into surrounding neuronal networks by extending their axons through the pores. Thus, our method for encapsulating neurons with a porous graphene-laden film allows the construction of precisely shaped neuronal tissues that interact with their surroundings. We believe that the method will open a new avenue for the reconstruction of functional neuronal tissues and is potentially applicable to other self-folding bilayers.
Collapse
Affiliation(s)
- Koji Sakai
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
| | - Tetsuhiko F Teshima
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
| | - Hiroshi Nakashima
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
| | - Yuko Ueno
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
| |
Collapse
|
5
|
Bolaños Quiñones VA, Zhu H, Solovev AA, Mei Y, Gracias DH. Origami Biosystems: 3D Assembly Methods for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800230] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vladimir A. Bolaños Quiñones
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Hong Zhu
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Alexander A. Solovev
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Yongfeng Mei
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N Charles Street, 221 Maryland Hall Baltimore MD 21218 USA
| |
Collapse
|
6
|
Ionov L. 4D Biofabrication: Materials, Methods, and Applications. Adv Healthc Mater 2018; 7:e1800412. [PMID: 29978564 DOI: 10.1002/adhm.201800412] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Indexed: 12/12/2022]
Abstract
The mission of regenerative medicine is the development of methods to regrow, repair, or replace damaged or diseased cells, organs, or tissues. 3D bioprinting techniques are one of the most promising approaches for engineering the design of artificial tissues. Current 3D bioprinting technologies possess, however, several intrinsic limitations. 4D biofabrication, a recently developed technology with the embedded ability of shape transformation upon response to intrinsic and/or external stimuli, may solve challenges of 3D bioprinting as well as more accurately mimic the dynamics of the native tissues. This article covers recent advances in 4D biofabrication. It gives a detailed picture of used materials and technologies, provides critical comparisons of methods, discusses possibilities and limitations of different 4D biofabrication technologies, and gives examples of applications.
Collapse
Affiliation(s)
- Leonid Ionov
- Faculty of Engineering Science; University of Bayreuth; Universitätsstr. 30 95440 Bayreuth Germany
| |
Collapse
|
7
|
Chen C, Song P, Meng F, Ou P, Liu X, Song J. Effect of topological patterning on self-rolling of nanomembranes. NANOTECHNOLOGY 2018; 29:345301. [PMID: 29848800 DOI: 10.1088/1361-6528/aac8fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of topological patterning (i.e., grating and rectangular patterns) on the self-rolling behaviors of heteroepitaxial strained nanomembranes have been systematically studied. An analytical modeling framework, validated through finite-element simulations, has been formulated to predict the resultant curvature of the patterned nanomembrane as the pattern thickness and density vary. The effectiveness of the grating pattern in regulating the rolling direction of the nanomembrane has been demonstrated and quantitatively assessed. Further to the rolling of nanomembranes, a route to achieve predictive design of helical structures has been proposed and showcased. The present study provides new knowledge and mechanistic guidance towards predictive control and tuning of roll-up nanostructures via topological patterning.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Materials Engineering, McGill University, Montréal, Québec H3A0C5, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Pagaduan JV, Bhatta A, Romer LH, Gracias DH. 3D Hybrid Small Scale Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702497. [PMID: 29749014 DOI: 10.1002/smll.201702497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well-ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.
Collapse
Affiliation(s)
- Jayson V Pagaduan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anil Bhatta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Cell Biology, Department of Biomedical Engineering, Department of Pediatrics and the Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
9
|
Xu B, Tian Z, Wang J, Han H, Lee T, Mei Y. Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection. SCIENCE ADVANCES 2018; 4:eaap8203. [PMID: 29740609 PMCID: PMC5938281 DOI: 10.1126/sciadv.aap8203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/15/2018] [Indexed: 05/07/2023]
Abstract
Nanomembrane rolling offers advanced three-dimensional (3D) mesostructures in electronics, optics, and biomedical applications. We demonstrate a high-density and on-chip array of rolled-up nanomembrane actuators with stimuli-responsive function based on the volume expansion of palladium in hydrogen milieu. The uniform stimuli-responsive behavior of high-density nanomembrane rolls leads to huge macroscopic visual detection with more than 50% transmittance change under optimization of micropattern design. The reversible shape changing between rolled and flat (unrolled) statuses can be well explained on the basis of the elastic mechanical model. The strain change in the palladium layer during hydrogen absorption and desorption produces a marked change in the diameter of nanomembrane rolls. We found that a functional palladium layer established an external compressive strain after hydrogen stimuli and thus also reduced the rolls' diameters. The large area of the nanomembrane roll array performs excellent nonelectrical hydrogen detection, with response and recovery speeds within seconds. Our work suggests a new strategy to integrate high-density 3D mesoscale architectures into functional devices and systems.
Collapse
Affiliation(s)
- Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Ziao Tian
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jiao Wang
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- School of Information Science and Engineering, Fudan University, Shanghai 200433, China
| | - Heetak Han
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul 120749, Republic of Korea
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul 120749, Republic of Korea
- Corresponding author. (Y.M.); (T.L.)
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Corresponding author. (Y.M.); (T.L.)
| |
Collapse
|
10
|
Teshima TF, Nakashima H, Ueno Y, Sasaki S, Henderson CS, Tsukada S. Cell Assembly in Self-foldable Multi-layered Soft Micro-rolls. Sci Rep 2017; 7:17376. [PMID: 29273722 PMCID: PMC5741765 DOI: 10.1038/s41598-017-17403-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
Abstract
Multi-layered thin films with heterogeneous mechanical properties can be spontaneously transformed to realise various three-dimensional (3D) geometries. Here, we describe micro-patterned all-polymer films called micro-rolls that we use for encapsulating, manipulating, and observing adherent cells in vitro. The micro-rolls are formed of twin-layered films consisting of two polymers with different levels of mechanical stiffness; therefore they can be fabricated by using the strain engineering and a self-folding rolling process. By controlling the strain of the films geometrically, we can achieve 3D tubular architectures with controllable diameters. Integration with a batch release of sacrificial hydrogel layers provides a high yield and the biocompatibility of the micro-rolls with any length in the release process without cytotoxicity. Thus, the multiple cells can be wrapped in individual micro-rolls and artificially reconstructed into hollow or fibre-shaped cellular 3D constructs that possess the intrinsic morphologies and functions of living tissues. This system can potentially provide 3D bio-interfaces such as those needed for reconstruction and assembly of functional tissues and implantable tissue grafts.
Collapse
Affiliation(s)
- Tetsuhiko F Teshima
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
| | - Hiroshi Nakashima
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Yuko Ueno
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Satoshi Sasaki
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Calum S Henderson
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
- School of Chemistry, The University of Edinburgh, Scotland David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Shingo Tsukada
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Sonja M. Weiz
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
- Material Systems for Nanoelectronics; Chemnitz University of Technology; Reichenhainer Straße 70 09107 Chemnitz Germany
| |
Collapse
|
12
|
Chen C, Song P, Meng F, Li X, Liu X, Song J. Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain. NANOTECHNOLOGY 2017; 28:485302. [PMID: 29048333 DOI: 10.1088/1361-6528/aa94aa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Materials Engineering, McGill University, Montréal, Québec H3A0C5, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
14
|
Kwag HR, Serbo JV, Korangath P, Sukumar S, Romer LH, Gracias DH. A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma. Tissue Eng Part C Methods 2016; 22:398-407. [PMID: 26831041 DOI: 10.1089/ten.tec.2015.0442] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.
Collapse
Affiliation(s)
- Hye Rin Kwag
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Janna V Serbo
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Preethi Korangath
- 3 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Saraswati Sukumar
- 3 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Lewis H Romer
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Anesthesiology and Critical Care Medicine, Cell Biology, Pediatrics, Center for Cell Dynamics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - David H Gracias
- 1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland.,5 Department of Materials Science and Engineering, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
15
|
Sun Y, Li H, Lin Y, Niu L, Wang Q. Integration of poly(3-hexylthiophene) conductive stripe patterns with 3D tubular structures for tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra14109a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P3HT was self-assembled into large-scale conductive stripe patterns based on confined evaporative self-assembly. These conductive stripe patterns could induce cell alignment and provide spatial electric signals to modulate cellular behaviors.
Collapse
Affiliation(s)
- Yingjuan Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Hongyan Li
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory of Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry
- c/o Engineering Laboratory of Modern Analytical Techniques
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- Department of Chemistry and Biochemistry
| |
Collapse
|
16
|
Abstract
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.
Collapse
Affiliation(s)
- M M Stanton
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|