1
|
Vaněčková E, Hrdlička V, Šebera J, Hromadová M, Kocábová J, Sebechlebská T, Kolivoška V. Pencil graphite electrodes for in-situ spectroelectrochemical sensing of reaction intermediates and products in organic solvents. Anal Chim Acta 2024; 1296:342350. [PMID: 38401936 DOI: 10.1016/j.aca.2024.342350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Spectroelectrochemistry (SEC) is a valuable analytical tool providing insights to reaction mechanisms and the structure of species involved in charge transfer reactions. Most of commercial SEC setups are based on platinum working electrodes where the adsorption of species involved in reactions often complicates their analysis. RESULTS In this work, we employ an array of pencil graphite rods as an optically transparent working electrode in a custom-made air-tight thin-layer cell suitable for the SEC analysis performed here in acetonitrile as a representative non-aqueous solvent. The functionality of the device was demonstrated by UV-Vis SEC sensing of charge transfer reactions of ruthenium acetylacetonate, ferrocene and ethylviologen dibromide redox probes performed employing the cyclic voltammetry. The SEC response obtained for all three probes confirmed no adsorption and the absence of oxygen in the cell. Furthermore, we have developed and utilized finite element method numerical simulations considering charge transfer reactions coupled with the diffusional mass transport to model the cyclic voltammetric response and the reaction conversion in the thin-layer SEC cell. SIGNIFICANCE Our work paves the way for easy-to-assemble customized air-tight adsorption-free SEC devices with the manufacturing costs well below those of commercially available platforms. Developed computational approaches have the predictive power for optimizing reaction conditions and the geometry of the SEC cell.
Collapse
Affiliation(s)
- Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Vojtěch Hrdlička
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Jakub Šebera
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Jana Kocábová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Táňa Sebechlebská
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava 4, Slovak Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| |
Collapse
|
2
|
Mahmoud RH, Gomaa OM, Hassan RYA. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Adv 2022; 12:5749-5764. [PMID: 35424538 PMCID: PMC8981509 DOI: 10.1039/d1ra08487a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Microbial fuel cells (MFCs) are recognized as a future technology with a unique ability to exploit metabolic activities of living microorganisms for simultaneous conversion of chemical energy into electrical energy. This technology holds the promise to offer sustained innovations and continuous development towards many different applications and value-added production that extends beyond electricity generation, such as water desalination, wastewater treatment, heavy metal removal, bio-hydrogen production, volatile fatty acid production and biosensors. Despite these advantages, MFCs still face technical challenges in terms of low power and current density, limiting their use to powering only small-scale devices. Description of some of these challenges and their proposed solutions is demanded if MFCs are applied on a large or commercial scale. On the other hand, the slow oxygen reduction process (ORR) in the cathodic compartment is a major roadblock in the commercialization of fuel cells for energy conversion. Thus, the scope of this review article addresses the main technical challenges of MFC operation and provides different practical approaches based on different attempts reported over the years. Sustainable operation requires addressing key MFC-bottleneck issues. Enhancing extracellular electron transfer is the key to elevated MFC performance.![]()
Collapse
Affiliation(s)
- Rehab H. Mahmoud
- Water Pollution Research Department, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Ola M. Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, 12622 Giza, Egypt
| |
Collapse
|
3
|
Singhal HR, Prabhu A, Giri Nandagopal M, Dheivasigamani T, Mani NK. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Pinck S, Ostormujof LM, Teychené S, Erable B. Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. Microorganisms 2020; 8:E1841. [PMID: 33238493 PMCID: PMC7700166 DOI: 10.3390/microorganisms8111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is the ambition of many researchers to finally be able to close in on the fundamental, coupled phenomena that occur during the formation and expression of electrocatalytic activity in electroactive biofilms. It is because of this desire to understand that bioelectrochemical systems (BESs) have been miniaturized into microBES by taking advantage of the worldwide development of microfluidics. Microfluidics tools applied to bioelectrochemistry permit even more fundamental studies of interactions and coupled phenomena occurring at the microscale, thanks, in particular, to the concomitant combination of electroanalysis, spectroscopic analytical techniques and real-time microscopy that is now possible. The analytical microsystem is therefore much better suited to the monitoring, not only of electroactive biofilm formation but also of the expression and disentangling of extracellular electron transfer (EET) catalytic mechanisms. This article reviews the details of the configurations of microfluidic BESs designed for selected objectives and their microfabrication techniques. Because the aim is to manipulate microvolumes and due to the high modularity of the experimental systems, the interfacial conditions between electrodes and electrolytes are perfectly controlled in terms of physicochemistry (pH, nutrients, chemical effectors, etc.) and hydrodynamics (shear, material transport, etc.). Most of the theoretical advances have been obtained thanks to work carried out using models of electroactive bacteria monocultures, mainly to simplify biological investigation systems. However, a huge virgin field of investigation still remains to be explored by taking advantage of the capacities of microfluidic BESs regarding the complexity and interactions of mixed electroactive biofilms.
Collapse
Affiliation(s)
| | | | | | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432 Toulouse, France; (S.P.); (L.M.O.); (S.T.)
| |
Collapse
|
5
|
Rao LT, Rewatkar P, Dubey SK, Javed A, Goel S. Automated pencil electrode formation platform to realize uniform and reproducible graphite electrodes on paper for microfluidic fuel cells. Sci Rep 2020; 10:11675. [PMID: 32669600 PMCID: PMC7363794 DOI: 10.1038/s41598-020-68579-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Graphite pencil stroked electrodes for paper-based Microfluidic devices are gaining immense attention due to their electrochemical properties, cost efficiency, and ease-of-use. However, their widespread use has been hindered by the challenges associated with their manual fabrication such as non-uniformity in graphite deposition, applied pressure, etc. This work presents the design and development of an automated graphite pencil stroking device for graphite electrode fabrication with high efficiency through a compact, inexpensive and automatic process, with reduced fabrication time and human intervention leading to more uniformity. The motion platform of Graphtec plotter was used to create multiple strokes with the help of the proposed device. Such inexpensive graphite electrodes (less than the US $1) have been observed to be porous in nature, acting as diffusion agents. The automated graphite electrodes were used to study the performance of microfluidic paper fuel cells (MPFCs) with formic acid, oxygen, and sulphuric acid acting as fuel, oxidising agent and electrolyte respectively. From this configuration, the maximum current density and power density were measured to be 1,305.5 µA cm-2 and 135.5 µW cm-2, respectively at 0.3 V stable OCP at 100 strokes. Overall, the study enumerates the development of an automated pencil stroke device for fabricating graphite electrodes, which can potentially be harnessed in numerous miniaturized paper based applications.
Collapse
Affiliation(s)
- Lanka Tata Rao
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Prakash Rewatkar
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Satish Kumar Dubey
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Arshad Javed
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
6
|
Kar S, Das SS, Laha S, Chakraborty S. Microfluidics on Porous Substrates Mediated by Capillarity-Driven Transport. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Das SS, Pedireddi VM, Bandopadhyay A, Saha P, Chakraborty S. Electrical Power Generation from Wet Textile Mediated by Spontaneous Nanoscale Evaporation. NANO LETTERS 2019; 19:7191-7200. [PMID: 31507187 DOI: 10.1021/acs.nanolett.9b02783] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing low-weight, frugal, and sustainable power sources for resource-limited settings appears to be a challenging proposition for the advancement of next-generation sensing devices and beyond. Here, we report the use of centimeter-sized simple wet fabric pieces for electrical power generation by deploying the interplay of a spontaneously induced ionic motion across fabric nanopores due to capillary action and simultaneous water evaporation by drawing thermal energy from the ambient. Unlike other reported devices with similar functionalities, our arrangement does not necessitate any input mechanical energy or complex topographical structures to be embedded in the substrate. A single device is capable of generating a sustainable open circuit potential up to ∼700 mV, which is further scaled up to ∼12 V with small-scale multiplexing (i.e., deploying around 40 numbers of fabric channels simultaneously). The device is able to charge a commercial supercapacitor of ∼0.1 F which can power a white light-emitting diode for more than 1 h. This suffices in establishing an inherent capability of functionalizing self-powered electronic devices and also to be potentially harnessed for enhanced power generation with feasible up-scaling.
Collapse
Affiliation(s)
- Sankha Shuvra Das
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India 721302
| | - Vinay Manaswi Pedireddi
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India 721302
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India 721302
| | - Partha Saha
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India 721302
| | - Suman Chakraborty
- Department of Mechanical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India 721302
| |
Collapse
|
8
|
González-Pabón MJ, Figueredo F, Martínez-Casillas DC, Cortón E. Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices. PLoS One 2019; 14:e0222538. [PMID: 31568487 PMCID: PMC6768485 DOI: 10.1371/journal.pone.0222538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Microbial fuel cells (MFCs) can evolve in a viable technology if environmentally sound materials are developed and became available at low cost for these devices. This is especially important not only for the designing of large wastewater treatment systems, but also for the fabrication of low-cost, single-use devices. In this work we synthesized membranes by a simple procedure involving easily-biodegradable and economic materials such as poly (vinyl alcohol) (PVA), chitosan (CS) and the composite PVA:CS. Membranes were chemical and physically characterized and compared to Nafion®. Performance was studied using the membrane as separator in a typical H-Type MFCs showing that PVA:CS membrane outperform Nafion® 4 times (power production) while being 75 times more economic. We found that performance in MFC depends over interactions among several membrane characteristics such as oxygen permeability and ion conductivity. Moreover, we design a paper-based micro-scale MFC, which was used as a toxicity assay using 16 μL samples containing formaldehyde as a model toxicant. The PVA:CS membrane presented here can offer low environmental impact and become a very interesting option for point of need single-use analytical devices, especially in low-income countries where burning is used as disposal method, and toxic fluoride fumes (from Nafion®) can be released to the environment.
Collapse
Affiliation(s)
- María Jesús González-Pabón
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Figueredo
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diana C. Martínez-Casillas
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Nath D, Sai Kiran P, Rewatkar P, Krishnamurthy B, Sankar Ganesh P, Goel S. Escherichia Coli Fed Paper-Based Microfluidic Microbial Fuel Cell With MWCNT Composed Bucky Paper Bioelectrodes. IEEE Trans Nanobioscience 2019; 18:510-515. [DOI: 10.1109/tnb.2019.2919930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
|
11
|
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible Electronics Based on Micro/Nanostructured Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801588. [PMID: 30066444 DOI: 10.1002/adma.201801588] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/02/2018] [Indexed: 05/26/2023]
Abstract
Over the past several years, a new surge of interest in paper electronics has arisen due to the numerous merits of simple micro/nanostructured substrates. Herein, the latest advances and principal issues in the design and fabrication of paper-based flexible electronics are highlighted. Following an introduction of the fascinating properties of paper matrixes, the construction of paper substrates from diverse functional materials for flexible electronics and their underlying principles are described. Then, notable progress related to the development of versatile electronic devices is discussed. Finally, future opportunities and the remaining challenges are examined. It is envisioned that more design concepts, working principles, and advanced papermaking techniques will be developed in the near future for the advanced functionalization of paper, paving the way for the mass production and commercial applications of flexible paper-based electronic devices.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Xin Cheng
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| |
Collapse
|
12
|
Das SS, Kar S, Anwar T, Saha P, Chakraborty S. Hydroelectric power plant on a paper strip. LAB ON A CHIP 2018; 18:1560-1568. [PMID: 29722772 DOI: 10.1039/c7lc01350g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We exploit the combinatorial advantage of electrokinetics and tortuosity of a cellulose-based paper network on laboratory grade filter paper for the development of a simple, inexpensive, yet extremely robust (shows constant performance for 12 days) 'paper-and-pencil'-based device for energy harvesting applications. We successfully achieve harvesting of a maximum output power of ∼640 pW in a single channel, while the same is significantly improved (by ∼100 times) with the use of a multichannel microfluidic array (maximum of up to 20 channels). Furthermore, we also provide theoretical insights into the observed phenomenon and show that the experimentally predicted trends agree well with our theoretical calculations. Thus, we envisage that such ultra-low cost devices may turn out to be extremely useful in energizing analytical microdevices in resource limited settings, for instance, in extreme point of care diagnostic applications.
Collapse
Affiliation(s)
- Sankha Shuvra Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | | | | | |
Collapse
|
13
|
On-Demand Micro-Power Generation from an Origami-Inspired Paper Biobattery Stack. BATTERIES-BASEL 2018. [DOI: 10.3390/batteries4020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Yang Y, Liu T, Tao K, Chang H. Generating Electricity on Chips: Microfluidic Biofuel Cells in Perspective. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Tianyu Liu
- Department
of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States of America
| | | | | |
Collapse
|
15
|
A flexible and disposable battery powered by bacteria using eyeliner coated paper electrodes. Biosens Bioelectron 2017; 94:464-470. [DOI: 10.1016/j.bios.2017.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/26/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
|
16
|
Fraiwan A, Choi S. A stackable, two-chambered, paper-based microbial fuel cell. Biosens Bioelectron 2016; 83:27-32. [DOI: 10.1016/j.bios.2016.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
|
17
|
Lee SH, Ban JY, Oh CH, Park HK, Choi S. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes. Sci Rep 2016; 6:28588. [PMID: 27333815 PMCID: PMC4917852 DOI: 10.1038/srep28588] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/07/2016] [Indexed: 11/11/2022] Open
Abstract
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.
Collapse
Affiliation(s)
- Seung Ho Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ju Yeon Ban
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Korea
| | - Chung-Hun Oh
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Korea
| | - Hun-Kuk Park
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Samjin Choi
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|