1
|
Joergensen JH, Qiu W, Bruus H. Transition from Boundary-Driven to Bulk-Driven Acoustic Streaming Due to Nonlinear Thermoviscous Effects at High Acoustic Energy Densities. PHYSICAL REVIEW LETTERS 2023; 130:044001. [PMID: 36763435 DOI: 10.1103/physrevlett.130.044001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Acoustic streaming at high acoustic energy densities E_{ac} is studied in a microfluidic channel. It is demonstrated theoretically, numerically, and experimentally with good agreement that frictional heating can alter the streaming pattern qualitatively at high E_{ac} above 400 J/m^{3}. The study shows how as a function of increasing E_{ac} at fixed frequency, the traditional boundary-driven four streaming rolls created at a half-wave standing-wave resonance transition into two large streaming rolls. This nonlinear transition occurs because friction heats up the fluid resulting in a temperature gradient, which spawns an acoustic body force in the bulk that drives thermoacoustic streaming.
Collapse
Affiliation(s)
- Jonas Helboe Joergensen
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Wei Qiu
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 22363, Lund, Sweden
| | - Henrik Bruus
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Joergensen JH, Bruus H. Theory and modeling of nonperturbative effects in thermoviscous acoustofluidics. Phys Rev E 2023; 107:015106. [PMID: 36797916 DOI: 10.1103/physreve.107.015106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/02/2022] [Indexed: 01/26/2023]
Abstract
A theoretical model of thermal boundary layers and acoustic heating in microscale acoustofluidic devices is presented. Based on it, an iterative numerical model is developed that enables numerical simulation of nonlinear thermoviscous effects due to acoustic heating and thermal advection. Effective boundary conditions are derived and used to enable simulations in three dimensions. The theory shows how friction in the viscous boundary layers causes local heating of the acoustofluidic device. The resulting temperature field spawns thermoacoustic bulk streaming that dominates the traditional boundary-driven Rayleigh streaming at relatively high acoustic energy densities. The model enables simulations of microscale acoustofluidics with high acoustic energy densities and streaming velocities in a range beyond the reach of perturbation theory, and is relevant for design and fabrication of high-throughput acoustofluidic devices.
Collapse
Affiliation(s)
- Jonas Helboe Joergensen
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Henrik Bruus
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Lickert F, Ohlin M, Bruus H, Ohlsson P. Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:4281. [PMID: 34241446 DOI: 10.1121/10.0005113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
A finite-element model is presented for numerical simulation in three dimensions of acoustophoresis of suspended microparticles in a microchannel embedded in a polymer chip and driven by an attached piezoelectric transducer at MHz frequencies. In accordance with the recently introduced principle of whole-system ultrasound resonances, an optimal resonance mode is identified that is related to an acoustic resonance of the combined transducer-chip-channel system and not to the conventional pressure half-wave resonance of the microchannel. The acoustophoretic action in the microchannel is of comparable quality and strength to conventional silicon-glass or pure glass devices. The numerical predictions are validated by acoustic focusing experiments on 5-μm-diameter polystyrene particles suspended inside a microchannel, which was milled into a polymethylmethacrylate chip. The system was driven anti-symmetrically by a piezoelectric transducer, driven by a 30-V peak-to-peak alternating voltage in the range from 0.5 to 2.5 MHz, leading to acoustic energy densities of 13 J/m3 and particle focusing times of 6.6 s.
Collapse
Affiliation(s)
- Fabian Lickert
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | | | - Henrik Bruus
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | | |
Collapse
|
4
|
Spigarelli L, Vasile NS, Pirri CF, Canavese G. Numerical study of the effect of channel aspect ratio on particle focusing in acoustophoretic devices. Sci Rep 2020; 10:19447. [PMID: 33173108 PMCID: PMC7655847 DOI: 10.1038/s41598-020-76367-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Acoustophoretic microfluidic devices are promising non-contact and high-throughput tools for particle manipulation. Although the effectiveness of this technique has been widely demonstrated for applications based on micrometer-sized particles, the manipulation and focusing of sub-micrometer ones is challenging due to the presence of acoustic streaming. In this article, our study has the aim to investigate and understand which geometrical parameters could be changed to limit the acoustic streaming effect. We numerically study the well-known rectangular cross section of a microfluidic channel and perform a parametric study of the aspect ratio for several particle sizes. The efficiency of the focusing, is explored for different sized particles in order to identify a trend for which the acoustic streaming does not drastically influence the focusing motion of the particles. The possibility to efficiently separate different solid components in liquid suspensions, i.e. the whole blood, is crucial for all applications that require a purified medium such as plasmapheresis or an increase of the concentration of specific subpopulation as the outcome, such as proteomics, cancer biomarker detections and extracellular vesicles separation.
Collapse
Affiliation(s)
- L Spigarelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - N S Vasile
- SynBio Lab, Italian Institute of Technology, Via Livorno 60, 10144, Turin, Italy
| | - C F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.,Chilab - Materials and Microsystems Laboratory - DISAT Politecnico di Torino, Via Lungo Piazza d'Armi 6, 10034, Chivasso (Turin), Italy
| | - G Canavese
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy. .,Chilab - Materials and Microsystems Laboratory - DISAT Politecnico di Torino, Via Lungo Piazza d'Armi 6, 10034, Chivasso (Turin), Italy.
| |
Collapse
|
5
|
Tahmasebipour A, Friedrich L, Begley M, Bruus H, Meinhart C. Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:359. [PMID: 32752779 DOI: 10.1121/10.0001634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The performance of a micro-acousto-fluidic device designed for microparticle trapping is simulated using a three-dimensional (3D) numerical model. It is demonstrated by numerical simulations that geometrically asymmetric architecture and actuation can increase the acoustic radiation forces in a liquid-filled cavity by almost 2 orders of magnitude when setting up a standing pressure half wave in a microfluidic chamber. Similarly, experiments with silicon-glass devices show a noticeable improvement in acoustophoresis of 20-μm silica beads in water when asymmetric devices are used. Microparticle acoustophoresis has an extensive array of applications in applied science fields ranging from life sciences to 3D printing. A more efficient and powerful particle manipulation system can boost the overall effectiveness of an acoustofluidic device. The numerical simulations are developed in the COMSOL Multiphysics® software package (COMSOL AB, Stockholm, Sweden). By monitoring the modes and magnitudes of simulated acoustophoretic fields in a relatively wide range of ultrasonic frequencies, a map of device performance is obtained. 3D resonant acoustophoretic fields are identified to quantify the improved performance of the chips with an asymmetric layout. Four different device designs are analyzed experimentally, and particle tracking experimental data qualitatively supports the numerical results.
Collapse
Affiliation(s)
- Amir Tahmasebipour
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Leanne Friedrich
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthew Begley
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Henrik Bruus
- Department of Physics, Technical University of Denmark, Danmarks Tekniske Universitet Physics Building 309, 2800 Kongens Lyngby, Denmark
| | - Carl Meinhart
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
6
|
Rashmi Pradhan S, Colmenares-Quintero RF, Colmenares Quintero JC. Designing Microflowreactors for Photocatalysis Using Sonochemistry: A Systematic Review Article. Molecules 2019; 24:E3315. [PMID: 31547232 PMCID: PMC6767219 DOI: 10.3390/molecules24183315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/25/2022] Open
Abstract
Use of sonication for designing and fabricating reactors, especially the deposition of catalysts inside a microreactor, is a modern approach. There are many reports that prove that a microreactor is a better setup compared with batch reactors for carrying out catalytic reactions. Microreactors have better energy efficiency, reaction rate, safety, a much finer degree of process control, better molecular diffusion, and heat-transfer properties compared with the conventional batch reactor. The use of microreactors for photocatalytic reactions is also being considered to be the appropriate reactor configuration because of its improved irradiation profile, better light penetration through the entire reactor depth, and higher spatial illumination homogeneity. Ultrasound has been used efficiently for the synthesis of materials, degradation of organic compounds, and fuel production, among other applications. The recent increase in energy demands, as well as the stringent environmental stress due to pollution, have resulted in the need to develop green chemistry-based processes to generate and remove contaminants in a more environmentally friendly and cost-effective manner. It is possible to carry out the synthesis and deposition of catalysts inside the reactor using the ultrasound-promoted method in the microfluidic system. In addition, the synergistic effect generated by photocatalysis and sonochemistry in a microreactor can be used for the production of different chemicals, which have high value in the pharmaceutical and chemical industries. The current review highlights the use of both photocatalysis and sonochemistry for developing microreactors and their applications.
Collapse
Affiliation(s)
- Swaraj Rashmi Pradhan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
7
|
Dong Z, Fernandez Rivas D, Kuhn S. Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. LAB ON A CHIP 2019; 19:316-327. [PMID: 30560264 PMCID: PMC6336152 DOI: 10.1039/c8lc00675j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 05/21/2023]
Abstract
The handling of solids in microreactors represents a challenging task. In this paper, we present an acoustophoretic microreactor developed to manage particles in flow and to control the material synthesis process. The reactor was designed as a layered resonator with an actuation frequency of 1.21 MHz, in which a standing acoustic wave is generated in both the depth and width direction of the microchannel. The acoustophoretic force exerted by the standing wave on the particles focuses them to the channel center. A parametric study of the effect of flow rate, particle size and ultrasound conditions on the focusing efficiency was performed. Furthermore, the reactive precipitation of calcium carbonate and barium sulfate was chosen as a model system for material synthesis. The acoustophoretic focusing effect avoids solid deposition on the channel walls and thereby minimizes reactor fouling and thus prevents clogging. Both the average particle size and the span of the particle size distribution of the synthesized particles are reduced by applying high-frequency ultrasound. The developed reactor has the potential to control a wide range of material synthesis processes.
Collapse
Affiliation(s)
- Zhengya Dong
- KU Leuven
, Department of Chemical Engineering
,
Celestijnenlaan 200F
, 3001 Leuven
, Belgium
.
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group
, MESA+ Institute
, University of Twente
,
7500 AE Enschede
, The Netherlands
| | - Simon Kuhn
- KU Leuven
, Department of Chemical Engineering
,
Celestijnenlaan 200F
, 3001 Leuven
, Belgium
.
| |
Collapse
|
8
|
Reichert P, Deshmukh D, Lebovitz L, Dual J. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis. LAB ON A CHIP 2018; 18:3655-3667. [PMID: 30374500 DOI: 10.1039/c8lc00833g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acoustophoresis, the movement of particles with sound, has evolved as a promising handling tool for micrometer-sized particles. Recent developments in thin film deposition technologies have enabled the reproducible fabrication of thin film piezoelectric materials for miniaturized ultrasound transducers. In this study, we combine both technologies and present the first implementation of a thin film Pb(Zr,Ti)O3 (PZT) transducer as actuation source for bulk acoustic wave (BAW) acoustophoresis. The design and fabrication process was developed for thin film BAW (TFBAW) devices. High-quality piezoelectric layers were produced using Solmates SMP-800 pulsed laser deposition (PLD) equipment which enables wafer-level batch fabrication. Results from simulations and experiments enabled the characterization of different designs and the prediction of the pressure field inside the TFBAW device. Moreover, the acoustic streaming field was analyzed to determine critical particle diameters for acoustophoresis. Operation conditions were identified for the acoustophoretic unit operations particle concentration and sorting. The TFBAW device was able to generate a high acoustic pressure amplitude of 0.55 MPa at a low peak input voltage of 0.5 V. Overall, this study demonstrates that TFBAW devices have the potential of a miniaturized, predictable and reproducible acoustic particle manipulation at a low voltage for lab-on-a-chip applications.
Collapse
Affiliation(s)
- Peter Reichert
- Institute for Mechanical Systems (IMES), Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Dhananjay Deshmukh
- Institute for Mechanical Systems (IMES), Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Lukas Lebovitz
- Institute for Mechanical Systems (IMES), Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Jürg Dual
- Institute for Mechanical Systems (IMES), Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
9
|
Ledbetter AD, Shekhani HN, Binkley MM, Meacham JM. Tuning the Coupled-Domain Response for Efficient Ultrasonic Droplet Generation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1893-1904. [PMID: 30047875 DOI: 10.1109/tuffc.2018.2859195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acoustic microfluidic devices encompass mechanical, fluidic, and electromechanical domains. Complicated multidomain interactions require the consideration of each individual material domain, as well as coupled behaviors to achieve optimal performance. Herein, we report the co-optimization of components comprising an ultrasonic droplet generator to achieve the high-efficiency liquid atomization for operation in the 0.5-2.5-MHz frequency range. Due to the complexity of the real system, simplified 2-D representations of the device are investigated using an experimentally validated finite element analysis model. Ejection modes (i.e., frequencies at which droplet generation is predicted) are distinguished by maxima in the local pressure at the tips of an array of triangular nozzles. Resonance behaviors of the transducer assembly and fluid-filled chamber are examined to establish optimal geometric combinations concerning the chamber pressure field. The analysis identifies how domain geometries affect pressure field uniformity, broadband operation, and tip pressure amplitude. Lower frequency modes are found to focus the acoustic energy at the expense of field uniformity within the nozzle array. Resonance matching yields a nearly threefold increase in maximum attainable tip pressure amplitude. Significantly, we establish a set of design principles for these complex devices, which resembles a classical half-wave transducer, quarter-wave matching layer, and half-wave chamber layered system.
Collapse
|
10
|
Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells. Anal Bioanal Chem 2018; 410:3385-3394. [PMID: 29651523 DOI: 10.1007/s00216-018-1034-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
We introduce a new method to construct microfluidic devices especially useful for bulk acoustic wave (BAW)-based manipulation of cells and microparticles. To obtain efficient acoustic focusing, BAW devices require materials that have high acoustic impedance mismatch relative to the medium in which the cells/microparticles are suspended and materials with a high-quality factor. To date, silicon and glass have been the materials of choice for BAW-based acoustofluidic channel fabrication. Silicon- and glass-based fabrication is typically performed in clean room facilities, generates hazardous waste, and can take several hours to complete the microfabrication. To address some of the drawbacks in fabricating conventional BAW devices, we explored a new approach by micromachining microfluidic channels in aluminum substrates. Additionally, we demonstrate plasma bonding of poly(dimethylsiloxane) (PDMS) onto micromachined aluminum substrates. Our goal was to achieve an approach that is both low cost and effective in BAW applications. To this end, we micromachined aluminum 6061 plates and enclosed the systems with a thin PDMS cover layer. These aluminum/PDMS hybrid microfluidic devices use inexpensive materials and are simply constructed outside a clean room environment. Moreover, these devices demonstrate effectiveness in BAW applications as demonstrated by efficient acoustic focusing of polystyrene microspheres, bovine red blood cells, and Jurkat cells and the generation of multiple focused streams in flow-through systems. Graphical abstract The aluminum acoustofluidic device and the generation of multinode focusing of particles.
Collapse
|
11
|
Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood-bacteria separation. Biomed Microdevices 2018; 19:70. [PMID: 28779375 DOI: 10.1007/s10544-017-0210-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.
Collapse
|
12
|
Charmet J, Arosio P, Knowles TP. Microfluidics for Protein Biophysics. J Mol Biol 2018; 430:565-580. [DOI: 10.1016/j.jmb.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
13
|
Lissandrello C, Dubay R, Kotz KT, Fiering J. Purification of Lymphocytes by Acoustic Separation in Plastic Microchannels. SLAS Technol 2018; 23:352-363. [PMID: 29346013 DOI: 10.1177/2472630317749944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Emerging cell therapies have created new demands for instruments that will increase processing efficiency. Purification of lymphocytes prior to downstream steps of gene transfer currently relies on centrifugal separation, which has drawbacks in output sample purity and process automation. Here, we present an alternative approach to blood cell purification using acoustic forces in plastic microchannels. We provide details regarding the system's ability to purify lymphocytes relative to other blood cell types while maintaining a high overall recovery, testing performance starting from leukapheresis product, buffy coat, and whole blood. Depending on settings, the device achieves for lymphocytes up to 97% purity and up to 68% recovery, and depletes 98% of monocytes while also reducing red cells and platelets. We expect that future scale-up of our system for increased throughput will enable its incorporation in the cell therapy workflow, and that it could ultimately reduce costs and expand access for patients.
Collapse
|
14
|
Savage WJ, Burns JR, Fiering J. Safety of acoustic separation in plastic devices for extracorporeal blood processing. Transfusion 2017; 57:1818-1826. [PMID: 28555930 DOI: 10.1111/trf.14158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Acoustic cell separation uses ultrasound waves to separate cells from plasma to perform plasmapheresis. Although the fundamental process has been studied for decades, no acoustic cell separation has been studied in a disposable plastic format suitable for clinical applications. STUDY DESIGN AND METHODS We developed a disposable, rectangular, polystyrene microchannel acoustic cell-separation system and applied acoustic energy relevant for plasmapheresis. Fresh blood from healthy volunteers was exposed in vitro to acoustic energy in an open microfluidic circuit with and without ultrasound applied. Blood was tested for perturbations in red blood cells, platelets, and coagulation using clinical assays. RESULTS Red blood cell and platelet size parameters as well as coagulation activation all were within 3% of baseline values. P-selectin expression on platelets increased by an average of 10.9% relative to baseline. Hemolysis increased with flow through the microfluidic channel, but percentage hemolysis remained below 0.3%. CONCLUSION Blood parameters in a single-pass, microfluidic acoustic cell-separation apparatus remained within normal limits. In vivo animal studies that model continuous separation in a physiologic environment are warranted.
Collapse
Affiliation(s)
- William J Savage
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
15
|
Fernandez Rivas D, Kuhn S. Synergy of Microfluidics and Ultrasound : Process Intensification Challenges and Opportunities. Top Curr Chem (Cham) 2016; 374:70. [PMID: 27654863 PMCID: PMC5480412 DOI: 10.1007/s41061-016-0070-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022]
Abstract
A compact snapshot of the current convergence of novel developments relevant to chemical engineering is given. Process intensification concepts are analysed through the lens of microfluidics and sonochemistry. Economical drivers and their influence on scientific activities are mentioned, including innovation opportunities towards deployment into society. We focus on the control of cavitation as a means to improve the energy efficiency of sonochemical reactors, as well as in the solids handling with ultrasound; both are considered the most difficult hurdles for its adoption in a practical and industrial sense. Particular examples for microfluidic clogging prevention, numbering-up and scaling-up strategies are given. To conclude, an outlook of possible new directions of this active and promising combination of technologies is hinted.
Collapse
Affiliation(s)
- David Fernandez Rivas
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, Carre 1.339, 7500 AE Enschede, The Netherlands
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|