1
|
Chen J, Zhou J, Peng Y, Dai X, Tan Y, Zhong Y, Li T, Zou Y, Hu R, Cui X, Ho HP, Gao BZ, Zhang H, Chen Y, Wang M, Zhang X, Qu J, Shao Y. Highly-Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309143. [PMID: 37944998 DOI: 10.1002/adma.202309143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxing Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuhang Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoqi Dai
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yan Tan
- School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yili Zhong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianzhong Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanhua Zou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Hu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Bruce Zhi Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC, 29634, USA
| | - Han Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meiting Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yonghong Shao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Khodadadi R, Pishbin E, Eghbal M, Abrinia K. Real-time monitoring and actuation of a hybrid siphon valve for hematocrit-independent plasma separation from whole blood. Analyst 2023; 148:5456-5468. [PMID: 37750420 DOI: 10.1039/d3an00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Centrifugal microfluidics have emerged as a pivotal area of research spanning multiple domains, including medicine and chemistry. Among passive valving strategies, siphon valves have gained prominence due to their inherent simplicity and self-reliance, eliminating the need for external equipment. However, achieving optimal valve performance mandates supplementary elements like surface adjustments or pneumatic pressure. These introduce intricacies such as time-dependent behavior and augmented spatial demands. This research introduces inventive design and manufacturing methodologies to amplify siphon valve functionality. Our proposed innovation situates the siphon microchannel on the external surface of the primary chamber, linked via an inlet. The crux of novelty lies in the adaptable material selection for the microchannel's upper or lower surfaces, allowing the integration of hydrophilic materials such as glass or super hydrophilic coverslips, ensuring a leakage-free operation. Our approach offers a streamlined concept and manufacturing process, ensures consistent time-independent functionality, and accommodates the integration of multiple siphon valves within a solitary chamber, tailored for specific applications. Experimental evaluations validate a robust alignment between acquired data and analytical outcomes based on a modified equation. A customized disc is engineered, featuring four siphon valves meticulously calibrated for hematocrit (HCT) levels spanning from 20% to 50% at 10% intervals. Harnessing these valves yields a substantial surge in plasma separation efficiency, scaling up to 75%. Notably, this performance eclipses traditional single-valve reliant microfluidic methodologies, achieving a purity level exceeding 99% in plasma separation. These findings underscore the auspicious practical applicability of our proposed technique in plasma separation, fostering heightened platelet concentration, and expediting blood sample analysis.
Collapse
Affiliation(s)
- Reza Khodadadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| | - Manouchehr Eghbal
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| | - Karen Abrinia
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Kollipara PS, Mahendra R, Li J, Zheng Y. Bubble-pen lithography: Fundamentals and applications: Nanoscience: Special Issue Dedicated to Professor Paul S. Weiss. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e189. [PMID: 37441005 PMCID: PMC10338034 DOI: 10.1002/agt2.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Developing on-chip functional devices requires reliable fabrication methods with high resolution for miniaturization, desired components for enhanced performance, and high throughput for fast prototyping and mass production. Recently, laser-based bubble-pen lithography (BPL) has been developed to enable sub-micron linewidths, in situ synthesis of custom materials, and on-demand patterning for various functional components and devices. BPL exploits Marangoni convection induced by a laser-controlled microbubble to attract, accumulate, and immobilize particles, ions, and molecules onto different substrates. Recent years have witnessed tremendous progress in theory, engineering, and application of BPL, which motivated us to write this review. First, an overview of experimental demonstrations and theoretical understandings of BPL is presented. Next, we discuss the advantages of BPL and its diverse applications in quantum dot displays, biological and chemical sensing, clinical diagnosis, nanoalloy synthesis, and microrobotics. We conclude this review with our perspective on the challenges and future directions of BPL.
Collapse
Affiliation(s)
| | - Ritvik Mahendra
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jingang Li
- Material Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA
- Material Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Lee H, Berk J, Webster A, Kim D, Foreman MR. Label-free detection of single nanoparticles with disordered nanoisland surface plasmon sensor. NANOTECHNOLOGY 2022; 33:165502. [PMID: 34915461 DOI: 10.1088/1361-6528/ac43e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We report sensing of single nanoparticles using disordered metallic nanoisland substrates supporting surface plasmon polaritons (SPPs). Speckle patterns arising from leakage radiation of elastically scattered SPPs provide a unique fingerprint of the scattering microstructure at the sensor surface. Experimental measurements of the speckle decorrelation are presented and shown to enable detection of sorption of individual gold nanoparticles and polystyrene beads. Our approach is verified through bright-field and fluorescence imaging of particles adhering to the nanoisland substrate.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joel Berk
- Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW, United Kingdom
| | - Aaron Webster
- Independent Scholar, 187 Pinehurst Rd, Canyon, CA 94516, United States of America
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Matthew R Foreman
- Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW, United Kingdom
| |
Collapse
|
6
|
Im Y, Kim S, Park J, Sung HJ, Jeon JS. Antibiotic susceptibility test under a linear concentration gradient using travelling surface acoustic waves. LAB ON A CHIP 2021; 21:3449-3457. [PMID: 34342326 DOI: 10.1039/d1lc00418b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An efficient and accurate antibiotic susceptibility test (AST) is indispensable for measuring the antimicrobial resistance of pathogenic bacteria. A minimal inhibitory concentration (MIC) can be obtained without performing repeated dilutions of the antibiotic by forming a linear antibiotic concentration gradient in a microfluidic channel. We demonstrated a device designed to use travelling surface acoustic waves (TSAWs) to enable a rapid formation of an antibiotic gradient in a few seconds. The TSAWs produced by a focused interdigital transducer deposited on the surface of a piezoelectric (LiNbO3) substrate generated an acoustic streaming flow inside a microfluidic channel, which mixed confluent streams of antibiotics in a controlled fashion. The growth of bacteria exposed to the antibiotic gradient was determined by measuring the MIC, which was used as an indicator of the effectiveness of the AST. The concentration gradient produced using our device was linear, a feature that enhanced the reliability of measurements throughout the microchannel. Two ASTs, namely Pseudomonas aeruginosa against gentamicin and levofloxacin were chosen for the case of slowly proliferating bacteria, and one AST, namely Escherichia coli against gentamicin, were chosen for the rapidly proliferating case. Appropriate antibiotic doses for Pseudomonas aeruginosa and Escherichia coli were each obtained in an efficient manner.
Collapse
Affiliation(s)
- Yongtaek Im
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jinsoo Park
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Hyung Jin Sung
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
7
|
Kim J, Lee H, Im S, Lee SA, Kim D, Toh KA. Machine learning-based leaky momentum prediction of plasmonic random nanosubstrate. OPTICS EXPRESS 2021; 29:30625-30636. [PMID: 34614783 DOI: 10.1364/oe.437939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
In this work, we explore the use of machine learning for constructing the leakage radiation characteristics of the bright-field images of nanoislands from surface plasmon polariton based on the plasmonic random nanosubstrate. The leakage radiation refers to a leaky wave of surface plasmon polariton (SPP) modes through a dielectric substrate which has drawn interest due to its possibility of direct visualization and analysis of SPP propagation. A fast-learning two-layer neural network has been deployed to learn and predict the relationship between the leakage radiation characteristics and the bright-field images of nanoislands utilizing a limited number of training samples. The proposed learning framework is expected to significantly simplify the process of leaky radiation image construction without the need of sophisticated equipment. Moreover, a wide range of application extensions can be anticipated for the proposed image-to-image prediction.
Collapse
|
8
|
Zhang Z, Pan J, Tang Y, Xu Y, Zhang L, Gong Y, Tong L. Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips. LAB ON A CHIP 2020; 20:2572-2579. [PMID: 32573608 DOI: 10.1039/d0lc00178c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic chips have been proven to be a powerful technical platform for chemical synthesis, biomedical research, and optofluidic devices. Here, we report a smart microfluidic chip (SMC) with multiple functionality to sense the status or incidents occurring on chip. The SMC is enabled by a soft, flexible and attachable film embedded with optical micro/nanofibres (MNFs), which is highly compatible with microfluidic chips fabricated by lithography. Based on the transition from guided modes to radiation modes of the MNFs, simultaneous flow rate detection in multiple channels is demonstrated on a SMC with high sensitivity. The MNF-enabled SMC is also capable of monitoring the transportation and morphology of microfluidic droplets with fast response. In addition, real-time counting of the magnetic droplets is performed to verify the SMC's anti-electromagnetic interference ability. This SMC is unique and may play an important role in microreactors, droplet microfluidics and optofluidic sensors.
Collapse
Affiliation(s)
- Zhang Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
All-Optical Formation and Manipulation of Microbubbles on a Porous Gold Nanofilm. MICROMACHINES 2020; 11:mi11050489. [PMID: 32397627 PMCID: PMC7281023 DOI: 10.3390/mi11050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Microbubble generation and manipulation in aqueous environments are techniques that have attracted considerable attention for their microfluidic and biological applications. Ultrasonic and hydrodynamic methods are commonly used to form and manipulate microbubbles, but these methods are limited by the relatively low precision of the microbubble sizes and locations. Here, we report an all-optical method for generation and manipulation of microbubbles with ~100 nm precision by using “hot spots” on a porous gold nanofilm under the illumination of near-infrared focused laser beam. The microbubble diameter ranged from 700 nm to 100 μm, with a standard deviation of 100 nm. The microbubbles were patterned into two-dimensional arrays, with an average location deviation of 90 nm. By moving the laser beam, the microbubbles could be manipulated to a desired region. This work provides a controllable way to form and manipulate microbubbles with ~100 nm precision, which is expected to have applications in optofluidic and plasmonic devices.
Collapse
|
10
|
Xu W, Wang Y, Jiao W, Wang F, Xu X, Jiang M, Ho HP, Wang G. Tunable optofluidic sorting and manipulation on micro-ring resonators from a statistics perspective. OPTICS LETTERS 2019; 44:3226-3229. [PMID: 31259927 DOI: 10.1364/ol.44.003226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Based on the optical trapping force of an evanescent wave at a micro-ring resonator alongside a waveguide, we propose a tunable optofluidic sorting unit for micro-nanoparticles by localized thermal phase tuning. With the tuning of field build-up factor of resonator, the depth of trapping potential well and the size of trapped particle are adjustable. Furthermore, by considering the Brownian motion of trapped particles from a statistics perspective, we verify the critical trapping threshold of a potential well, which is usually assumed to be 1kBT. The threshold depends not only on the optical power and particle size, but also on the length of the coupling region. Compared with a wavelength tuning mechanism, localized thermal tuning enables large-scale integration of many independent tunable resonators. As a demonstration, we propose a set of operations with three resonators for nanoparticle manipulation, including sorting, storing, and mixing. Our proposed function units are of great importance for on-chip large-scale integration of optofluidic systems.
Collapse
|
11
|
Cong H, Loo J, Chen J, Wang Y, Kong SK, Ho HP. Target trapping and in situ single-cell genetic marker detection with a focused optical beam. Biosens Bioelectron 2019; 133:236-242. [PMID: 30953882 DOI: 10.1016/j.bios.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Optical trapping of single particles or cells with the capability of in situ bio-sensing or genetic profiling opens the possibility of rapid screening of biological specimens. However, common optical tweezers suffer from the lack of long-range forces. Consequently, their application areas are predominantly limited to target manipulation instead of biological diagnostics. To solve this problem, we herein report an all-in-one approach by combining optical forces and convective drag forces generated through localized optothermal effect for long-range target manipulation. The device consists of a 2D array of gold coated polydimethylsiloxane (PDMS) micro-wells, which are immersed by colloidal particles or cell solution. Upon excitation of a 785-nm laser, the hydrodynamic convective force and optical forces will drag the targets of interest into their designated micro-wells. Moreover, the plasmonic thermal dissipation provides a constant temperature environment for following cell analysis procedures of cell isolation, lysis and isothermal nucleic acid amplification for the detection of genetic markers. With the merits of fabrication simplicity, short sample-to-answer cycle time and the compatibility with optical microscopes, the reported technique offers an attractive and highly versatile approach for on-site single cell analysis systems.
Collapse
Affiliation(s)
- Hengji Cong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China; Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiajie Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yuye Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Siu-Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Liu S, Li Z, Weng Z, Li Y, Shui L, Jiao Z, Chen Y, Luo A, Xing X, He S. Miniaturized optical fiber tweezers for cell separation by optical force. OPTICS LETTERS 2019; 44:1868-1871. [PMID: 30933168 DOI: 10.1364/ol.44.001868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 05/23/2023]
Abstract
In advanced biomedicine and microfluidics, there is a strong desire to sort and manipulate various cells and bacteria based on miniaturized microfluidic chips. Here, by integrating fiber tweezers into a T-type microfluidic channel, we report an optofluidic chip to selectively trap Escherichia coli in human blood solution based on different sizes and shapes. Furthermore, we simulate the trapping and pushing regions of other cells and bacteria, including rod-shaped bacteria, sphere-shaped bacteria, and cancer cells based on finite-difference analysis. With the advantages of controllability, low optical power, and compact construction, the strategy may be possibly applied in the fields of optical separation, cell transportation, and water quality analysis.
Collapse
|
13
|
Direction control of quasi-stokeslet induced by thermoplasmonic heating of a water vapor microbubble. Sci Rep 2019; 9:4770. [PMID: 30886312 PMCID: PMC6423281 DOI: 10.1038/s41598-019-41255-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/04/2019] [Indexed: 11/09/2022] Open
Abstract
We investigate the control of flow direction around a water vapor bubble using the thermoplasmonic effect of a gold nanoisland film (GNF) under laser irradiation with multiple spots. By focusing a laser spot on the GNF immersed in degassed water, a water vapor bubble with a diameter of ~10 μm is generated. Simultaneously, a sub laser spot was focused next to the bubble to yield a temperature gradient in the direction parallel to the GNF surface. Consequently, rapid flow was generated around the bubble, whose flow direction was dependent on the power of the sub laser spot. The observed flow was well-described using a stokeslet; the latter contained components normal and parallel to the GNF surface and was set to 10 μm above the GNF. This technique allows us to apply a significant force on the microfluid at the vicinity of the wall in the direction parallel to the wall surface, where the flow speed is generally suppressed by viscosity. It is expected to be useful for microfluidic pumping and microfluidic thermal management.
Collapse
|
14
|
Namura K, Nakajima K, Suzuki M. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters. NANOTECHNOLOGY 2018; 29:065201. [PMID: 29251265 DOI: 10.1088/1361-6528/aaa260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.
Collapse
Affiliation(s)
- Kyoko Namura
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | | | | |
Collapse
|
15
|
Chen J, Cong H, Loo J, Kang Z, Tang M, Zhang H, Wu SY, Kong SK, Ho HP. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci Rep 2016; 6:35814. [PMID: 27853191 PMCID: PMC5113121 DOI: 10.1038/srep35814] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/06/2016] [Indexed: 11/09/2022] Open
Abstract
Optical tweezers are a well-established tool for manipulating small objects. However, their integration with microfluidic devices often requires an objective lens. More importantly, trapping of non-transparent or optically sensitive targets is particularly challenging for optical tweezers. Here, for the first time, we present a photon-free trapping technique based on electro-thermally induced forces. We demonstrate that thermal-gradient-induced thermophoresis and thermal convection can lead to trapping of polystyrene spheres and live cells. While the subject of thermophoresis, particularly in the micro- and nano-scale, still remains to be fully explored, our experimental results have provided a reasonable explanation for the trapping effect. The so-called thermal tweezers, which can be readily fabricated by femtosecond laser writing, operate with low input power density and are highly versatile in terms of device configuration, thus rendering high potential for integration with microfluidic devices as well as lab-on-a-chip systems.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Hengji Cong
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Jacky Loo
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
- Biochemistry Programme, School of Life Sciences, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Zhiwen Kang
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Minghui Tang
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Haixi Zhang
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Shu-Yuen Wu
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Siu-Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| | - Ho-Pui Ho
- Department of Electronic Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong SAR,
China
| |
Collapse
|
16
|
|
17
|
Kang Z, Chen J, Ho HP. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands. NANOSCALE 2016; 8:10266-72. [PMID: 27125956 DOI: 10.1039/c6nr00375c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) typically requires hot-spots generated in nano-fabricated plasmonic structures. Here we report a highly versatile approach based on the use of random gold nano-island substrates (AuNIS). Hot spots are produced through the entrapment of colloidal plasmonic nano-crystals at the interface between AuNIS and a microbubble, which is generated from the localized plasmonic absorption of a focused laser beam. The entrapment strength is strongly dependent on the shape of the microbubble, which is in turn affected by the surface wetting characteristics of the AuNIS with respect to the solvent composition. The laser power intensity required to trigger microbubble-induced SERS is as low as 200 μW μm(-2). Experimental results indicate that the SERS limit of detection (LOD) for molecules of 4-MBA (with -SH bonds) is 10(-12) M, R6G or RhB (without -SH bonds) is 10(-7) M. The proposed strategy has potential applications in low-cost lab-on-chip devices for the label-free detection of chemical and biological molecules.
Collapse
Affiliation(s)
- Zhiwen Kang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | | | | |
Collapse
|
18
|
Tang M, Wang G, Kong SK, Ho HP. A Review of Biomedical Centrifugal Microfluidic Platforms. MICROMACHINES 2016; 7:E26. [PMID: 30407398 PMCID: PMC6190084 DOI: 10.3390/mi7020026] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Abstract
Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i) unit operations that perform specific functionalities, and (ii) systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Guanghui Wang
- Institute of Optical Communication Engineering, Nanjing University, Jiangsu 210009, China.
| | - Siu-Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ho-Pui Ho
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
19
|
Chen J, Kang Z, Kong SK, Ho HP. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. OPTICS LETTERS 2015; 40:3926-9. [PMID: 26368677 DOI: 10.1364/ol.40.003926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate optical trapping on a gold-coated single-mode fiber tip as excited by 980-nm laser radiation. The trapping force here is not due to common plasmonic localization, but dominated by the combined effect of thermophoresis and thermal convection. The reported scheme only requires simple thin-film deposition. More importantly, efficient broadband plasmonic absorption of the gold random nanostructures, aided by purely Gaussian excitation profile from the fiber core, has led to very low trapping-power threshold typically in hundreds of microwatts. This highly versatile fiber-based trapping scheme clearly offers many potential application possibilities in life sciences as well as engineering disciplines.
Collapse
|
20
|
Kang Z, Chen J, Wu SY, Ho HP. Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films. RSC Adv 2015. [DOI: 10.1039/c5ra19398b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we report the realization of trapping and assembly of colloidal crystals on continuous gold thin films based on the combined effect of thermophoresis and thermal convection associated with plasmonic optical heating.
Collapse
Affiliation(s)
- Zhiwen Kang
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Jiajie Chen
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Shu-Yuen Wu
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Ho-Pui Ho
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| |
Collapse
|