1
|
Støvring N, Heiskanen AR, Emnéus J, Sylvest Keller S. Electrochemical Redox Cycling with Pyrolytic Carbon Stacked-Layer Nanogap Electrodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14375-14388. [PMID: 39969911 DOI: 10.1021/acsami.4c18998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Redox cycling (RC) amplification has been introduced as an efficient strategy to enhance signals in electrochemical sensing at low analyte concentrations of relevant biomarkers such as dopamine. RC amplification requires closely spaced and electrically separate electrodes, preferably with nanogaps. The aim of this study was to establish a method enabling the microfabrication of carbon-based stacked-layer nanogap electrodes (SLNE) designed for RC amplification. Pyrolytic carbon was employed as the electrode material and Al2O3 deposited by atomic layer deposition as the insulating layer in between the two electrodes. SLNE with 89 nm nanogaps were realized without the need for high-resolution lithography methods, and access to the bottom generator electrode was enabled by dry etching of the insulating layer. Electrical separation between collector and generator electrodes was confirmed using resistance measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. Different SLNE designs and redox cycling modes were investigated in terms of capacitive background current, amplification factors, and collection efficiency using the neurotransmitter dopamine as model analyte. A redox cycling mode, here termed differential chronoamperometry (DCA) combining chronoamperometry with differential cyclic voltammetry, was proposed to minimize the effect of background current drift while still operating with steady-state currents. With DCA, a limit of detection (LOD) of 21 nM, a sensitivity of 83 nA μM-1, a linear range from 25 nM to 10 μM, and actual detection at low concentrations of 25 nM were demonstrated for dopamine.
Collapse
Affiliation(s)
- Nicolai Støvring
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Arto R Heiskanen
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
2
|
Shirato Y, Hsueh AJ, Ab Mutalib NA, Deng Y, Suematsu R, Kato A, Kearney BM, Kinoshita M, Suzuki H. Bipolar Clark-Type Oxygen Electrode Arrays for Imaging and Multiplexed Measurements of the Respiratory Activity of Cells. ACS OMEGA 2024; 9:10825-10833. [PMID: 38463262 PMCID: PMC10918805 DOI: 10.1021/acsomega.3c09802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Various miniature Clark-type oxygen electrodes (COEs), which are typically used to measure dissolved oxygen (DO) concentration in cellular respiration, have been developed since the 1980s. Arrays with individually addressable electrodes that constitute the sensor were used for various applications. However, the large number of leads and contact pads required for connecting the electrodes and the external instrument complicate the electrode layout and make the operation of integrated COE arrays challenging. Here, we fabricated closed bipolar electrochemical systems comprising 6 × 8 and 4 × 4 arrays of COEs for imaging and multiplexed detection. The cathodic compartment was sealed with a hydrophobic oxygen-permeable membrane to separate the internal electrolyte solution from the sample solutions. Using the bipolar Clark-type oxygen electrode (BCOE) arrays and electrochemiluminescence (ECL), we measured the DO concentration at each cathode. The results revealed that the ECL intensity changed linearly with the DO concentration. In addition, we used ECL imaging to investigate the respiratory activity of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) in suspensions with different cell densities. The ECL images showed that the ECL intensity changed noticeably with the bacterial density. The bacterial respiratory activity was then qualitatively analyzed based on the ECL images acquired successively over a time duration. Further, we measured the antibiotic efficacy of piperacillin, oxacillin, gentamicin, and cefmetazole against E. coli and P. aeruginosa using the BCOE. We found that the ECL intensity increased with the antibiotic concentration, thus indicating the suppression of the bacterial respiratory activity.
Collapse
Affiliation(s)
- Yusuke Shirato
- Graduate
School of Science and Technology, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - An-Ju Hsueh
- Graduate
School of Science and Technology, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Nurul Asyikeen Ab Mutalib
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Department
of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Deng
- Graduate
School of Science and Technology, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryohei Suematsu
- Department
of Immunology and Microbiology, National
Defense Medical College, Namiki 3-2, Tokorozawa 359-8513, Japan
| | - Azusa Kato
- Department
of Immunology and Microbiology, National
Defense Medical College, Namiki 3-2, Tokorozawa 359-8513, Japan
| | - Bradley M. Kearney
- Department
of Immunology and Microbiology, National
Defense Medical College, Namiki 3-2, Tokorozawa 359-8513, Japan
| | - Manabu Kinoshita
- Department
of Immunology and Microbiology, National
Defense Medical College, Namiki 3-2, Tokorozawa 359-8513, Japan
| | - Hiroaki Suzuki
- Graduate
School of Science and Technology, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Faculty
of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
3
|
Ito K, Inoue KY, Ito-Sasaki T, Ikegawa M, Takano S, Ino K, Shiku H. Highly Sensitive Electrochemical Endotoxin Sensor Based on Redox Cycling Using an Interdigitated Array Electrode Device. MICROMACHINES 2023; 14:327. [PMID: 36838027 PMCID: PMC9960723 DOI: 10.3390/mi14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The Limulus amebocyte lysate (LAL) reaction-based assay, the most commonly used endotoxin detection method, requires a skilled technician. In this study, to develop an easy-to-use and highly sensitive endotoxin sensor, we created an electrochemical endotoxin sensor by using an interdigitated array electrode (IDAE) device with advantages of amplifiable signals via redox cycling and portability. We added Boc-Leu-Gly-Arg-p-aminophenol (LGR-pAP) as an electrochemical substrate for an LAL reaction and detected p-aminophenol (pAP) released from LGR-pAP as a product of an endotoxin-induced LAL reaction via an IDAE device. The IDAE device showed a great redox cycling efficiency of 79.8%, and a 4.79-fold signal amplification rate. Then, we confirmed that pAP was detectable in the presence of LGR-pAP through chronoamperometry with the potential of the anode stepped from -0.3 to 0.5 V vs. Ag/AgCl while the cathode was biased at -0.3 V vs. Ag/AgCl. Then, we performed an endotoxin assay by using the IDAE device. Our endotoxin sensor detected as low as 0.7 and 1.0 endotoxin unit/L after the LAL reaction for 1 h and 45 min, respectively, and these data were within the cut-off value for ultrapure dialysis fluid. Therefore, our highly sensitive endotoxin sensor is useful for ensuring medical safety.
Collapse
Affiliation(s)
- Kentaro Ito
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Kumi Y. Inoue
- Center for Basic Education, Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan
| | - Takahiro Ito-Sasaki
- Department of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Miho Ikegawa
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Shinichiro Takano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Kosuke Ino
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| |
Collapse
|
4
|
Ito K, Y Inoue K, Ino K, Shiku H. High-Sensitivity Amperometric Dual Immunoassay Using Two Cascade Reactions with Signal Amplification of Redox Cycling in Nanoscale Gap. Anal Chem 2022; 94:16451-16460. [DOI: 10.1021/acs.analchem.2c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kentaro Ito
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai, Miyagi 980-8579, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai, Miyagi 980-8579, Japan
- Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Kosuke Ino
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai, Miyagi 980-8579, Japan
| | - Hitoshi Shiku
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
5
|
Iwama T, Inoue KY, Shiku H. Fabrication of High-Density Vertical Closed Bipolar Electrode Arrays by Carbon Paste Filling Method for Two-Dimensional Chemical Imaging. Anal Chem 2022; 94:8857-8866. [PMID: 35700401 DOI: 10.1021/acs.analchem.1c05354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a carbon paste filling method was proposed as a simple strategy for fabricating high-density bipolar electrode (BPE) arrays for bipolar electrochemical microscopy (BEM). High spatiotemporal resolution imaging was achieved using the fabricated BPE array. BEM, which is an emerging microscopic system in recent years, achieves label-free and high spatiotemporal resolution imaging of molecular distributions using high-density BPE arrays and electrochemiluminescence (ECL) signals. We devised a simple method to fabricate a BPE array by filling a porous plate with carbon paste and succeeded in fabricating a high-density BPE array (15 μm pitch). After a detailed observation of the surface of the BPE array using a scanning electron microscope, the basic electrochemical and ECL emission characteristics were evaluated using potassium ferricyanide solution as a sample solution. Moreover, inflow imaging of the sample molecules was conducted to evaluate the imaging ability of the prepared BPE array. In addition, Prussian Blue containing carbon ink was applied to the sample solution side of the BPE array to provide catalytic activity to hydrogen peroxide, and the quantification and inflow imaging of hydrogen peroxide by ECL signals was achieved. This simple fabrication method of the BPE array can accelerate the research and development of BEM. Furthermore, hydrogen peroxide imaging by BEM is an important milestone for achieving bioimaging with high spatiotemporal resolution such as biomolecule imaging using enzymes.
Collapse
Affiliation(s)
- Tomoki Iwama
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan.,Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
6
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
7
|
Kanno Y, Zhou Y, Fukuma T, Takahashi Y. Alkaline Phosphatase‐based Electrochemical Analysis for Point‐of‐Care Testing. ELECTROANAL 2021. [DOI: 10.1002/elan.202100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yusuke Kanno
- Institute of Innovative Research Tokyo Institute of Technology Yokohama Kanagawa 226-8503 Japan
| | - Yuanshu Zhou
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 Japan
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) Saitama 332-0012 Japan
| |
Collapse
|
8
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
9
|
|
10
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
11
|
Ino K, Yaegaki R, Hiramoto K, Nashimoto Y, Shiku H. Closed Bipolar Electrode Array for On-Chip Analysis of Cellular Respiration by Cell Aggregates. ACS Sens 2020; 5:740-745. [PMID: 31997640 DOI: 10.1021/acssensors.9b02061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell aggregates have attracted much attention owing to their potential applications in tissue engineering and drug screening. To evaluate cellular respiration of individual cell aggregates in these applications, noninvasive and on-chip high-throughput analytical tools are necessary. Electrochemical methods for detecting oxygen concentrations are useful because of their noninvasiveness. However, these conventional methods may be unsuitable for high-throughput detection because it is difficult to prepare many electrodes on a small chip owing to the limitation of area for connecting electrodes. Alternatively, a bipolar electrode (BPE) system offers clear advantages. In this system, electrochemical reactions are induced at both ends of a BPE without complex wiring. In this study, we present a BPE array for detecting the respiratory activity of cell aggregates. Oxygen concentrations near cell aggregates at cathodic poles of BPEs were converted to electrochemiluminescence (ECL) signals of [Ru(bpy)3]2+/tripropylamine at anodic poles of BPEs. To separate ECL chemicals from cell aggregates, we fabricated a closed BPE device containing analytical and reporter chambers. As a proof of concept, 32 BPEs were controlled wirelessly using a pair of driving electrodes, and the respiratory activities of individual MCF-7 cell aggregates as a cancer model were successfully detected by monitoring ECL signals. Compared with conventional electrode arrays for cell analysis, the wiring of the current device was simple because the multiple BPEs functioned with only a single power supply. To the best of our knowledge, this is the first study of on-chip analysis of cellular activity using a BPE system.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ryosuke Yaegaki
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
12
|
Zhang Y, Zhou C, Qu C, Wei M, He X, Bai B. Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media. LAB ON A CHIP 2019; 19:4071-4082. [PMID: 31702750 DOI: 10.1039/c9lc00847k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 μm to 10 μm for matrices and 100-200 μm for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a serious fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale 'shale-like' microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Chuanle Zhou
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Chuang Qu
- Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mingzhen Wei
- Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Xiaoming He
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Baojun Bai
- Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| |
Collapse
|
13
|
Hiramoto K, Ino K, Nashimoto Y, Ito K, Shiku H. Electric and Electrochemical Microfluidic Devices for Cell Analysis. Front Chem 2019; 7:396. [PMID: 31214576 PMCID: PMC6557978 DOI: 10.3389/fchem.2019.00396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022] Open
Abstract
Microfluidic devices are widely used for cell analysis, including applications for single-cell analysis, healthcare, environmental monitoring, and organs-on-a-chip that mimic organs in microfluidics. Moreover, to enable high-throughput cell analysis, real-time monitoring, and non-invasive cell assays, electric and electrochemical systems have been incorporated into microfluidic devices. In this mini-review, we summarize recent advances in these systems, with applications from single cells to three-dimensional cultured cells and organs-on-a-chip. First, we summarize microfluidic devices combined with dielectrophoresis, electrophoresis, and electrowetting-on-a-dielectric for cell manipulation. Next, we review electric and electrochemical assays of cells to determine chemical section activity, and oxygen and glucose consumption activity, among other applications. In addition, we discuss recent devices designed for the electric and electrochemical collection of cell components from cells. Finally, we highlight the future directions of research in this field and their application prospects.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ito
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Ito K, Inoue KY, Ino K, Matsue T, Shiku H. A highly sensitive endotoxin sensor based on redox cycling in a nanocavity. Analyst 2019; 144:3659-3667. [DOI: 10.1039/c9an00478e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive endotoxin sensor and novel analytical principle using diffusion coefficient difference was developed using a nanocavity device.
Collapse
Affiliation(s)
- Kentaro Ito
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Kosuke Ino
- Department of Applied Chemistry
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Hitoshi Shiku
- Department of Applied Chemistry
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
15
|
Ino K, Şen M, Shiku H, Matsue T. Micro/nanoelectrochemical probe and chip devices for evaluation of three-dimensional cultured cells. Analyst 2018; 142:4343-4354. [PMID: 29106427 DOI: 10.1039/c7an01442b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we present an overview of recent research progress in the development of micro/nanoelectrochemical probe and chip devices for the evaluation of three-dimensional (3D) cultured cells. First, we discuss probe devices: a general outline, evaluation of O2 consumption, enzyme-modified electrodes, evaluation of endogenous enzyme activity, and the collection of cell components from cell aggregates are discussed. The next section is focused on integrated chip devices: a general outline, electrode array devices, smart electrode array devices, droplet detection of 3D cultured cells, cell manipulation using dielectrophoresis (DEP), and electrodeposited hydrogels used for fabrication of 3D cultured cells on chip devices are discussed. Finally, we provide a summary and discussion of future directions of research in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Mustafa Şen
- Department of Biomedical Engineering, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
16
|
Abe H, Iwama T, Yabu H, Ino K, Inoue KY, Suda A, Kunikata R, Matsudaira M, Matsue T. Simultaneous and Selective Imaging of Dopamine and Glutamate Using an Enzyme‐modified Large‐scale Integration (LSI)‐based Amperometric Electrochemical Device. ELECTROANAL 2018. [DOI: 10.1002/elan.201800386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroya Abe
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Tomoki Iwama
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University 6-6-11-406 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Atsushi Suda
- Japan Aviation Electronics Industry, Ltd. 1-1, Musashino 3-chome, Akishima-shi Tokyo 196-8555 Japan
| | - Ryota Kunikata
- Japan Aviation Electronics Industry, Ltd. 1-1, Musashino 3-chome, Akishima-shi Tokyo 196-8555 Japan
| | - Masahki Matsudaira
- Micro System Integration Center Tohoku University 519-1176 Aramaki-aza Aoba, Aoba-ku Sendai 980-0845 Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| |
Collapse
|
17
|
Chen X, Zhang L. Review in manufacturing methods of nanochannels of bio-nanofluidic chips. SENSORS AND ACTUATORS B: CHEMICAL 2018; 254:648-659. [DOI: 10.1016/j.snb.2017.07.139] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
18
|
Zafarani HR, Mathwig K, Sudhölter EJR, Rassaei L. Electrochemical Amplification in Side-by-Side Attoliter Nanogap Transducers. ACS Sens 2017; 2:724-728. [PMID: 28670622 PMCID: PMC5485373 DOI: 10.1021/acssensors.7b00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022]
Abstract
We report a strategy for the fabrication of a new type of electrochemical nanogap transducer. These nanogap devices are based on signal amplification by redox cycling. Using two steps of electron-beam lithography, vertical gold electrodes are fabricated side by side at a 70 nm distance encompassing a 20 attoliter open nanogap volume. We demonstrate a current amplification factor of 2.5 as well as the possibility to detect the signal of only 60 analyte molecules occupying the detection volume. Experimental voltammetry results are compared to calculations from finite element analysis.
Collapse
Affiliation(s)
- Hamid Reza Zafarani
- Laboratory of Organic
Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Klaus Mathwig
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Ernst J. R. Sudhölter
- Laboratory of Organic
Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Liza Rassaei
- Laboratory of Organic
Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
19
|
Zhang H, Oellers T, Feng W, Abdulazim T, Saw EN, Ludwig A, Levkin PA, Plumeré N. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. Anal Chem 2017; 89:5832-5839. [DOI: 10.1021/acs.analchem.7b00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huijie Zhang
- Center
for Electrochemical Sciences—CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Tobias Oellers
- Chair
of MEMS Materials, Institute for Materials, Faculty of Mechanical
Engineering, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Wenqian Feng
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Tarik Abdulazim
- Center
for Electrochemical Sciences—CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - En Ning Saw
- Center
for Electrochemical Sciences—CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Alfred Ludwig
- Chair
of MEMS Materials, Institute for Materials, Faculty of Mechanical
Engineering, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Pavel A. Levkin
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Nicolas Plumeré
- Center
for Electrochemical Sciences—CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
20
|
Ino K, Kanno Y, Yamada Y, Shiku H, Matsue T. Binary-number-based digital electrochemical detection using a single working electrode with multiple sensors. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Adly N, Feng L, Krause KJ, Mayer D, Yakushenko A, Offenhäusser A, Wolfrum B. Flexible Microgap Electrodes by Direct Inkjet Printing for Biosensing Application. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201600016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nouran Adly
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Lingyan Feng
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
- Materials Genome Institute; Shanghai University; 200444 Shanghai China
| | - Kay J. Krause
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Dirk Mayer
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Alexey Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich (TUM) & BCCN Munich; Boltzmannstrasse 11 85748 Garching Germany
| |
Collapse
|
22
|
Adly NY, Bachmann B, Krause KJ, Offenhäusser A, Wolfrum B, Yakushenko A. Three-dimensional inkjet-printed redox cycling sensor. RSC Adv 2017. [DOI: 10.1039/c6ra27170g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical amplification through redox cycling in an all-inkjet-printed device utilizing four different functional inks.
Collapse
Affiliation(s)
- N. Y. Adly
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - B. Bachmann
- Neuroelectronics
- MSB
- Department of Electrical and Computer Engineering
- Technical University of Munich (TUM) & BCCN Munich
- Garching
| | - K. J. Krause
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A. Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - B. Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A. Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| |
Collapse
|
23
|
Hammond JL, Rosamond MC, Sivaraya S, Marken F, Estrela P. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor. SENSORS 2016; 16:s16122128. [PMID: 27983655 PMCID: PMC5191108 DOI: 10.3390/s16122128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 11/16/2022]
Abstract
Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)−DNA binding events using dielectric spectroscopy with the horizontal coplanar device.
Collapse
Affiliation(s)
- Jules L Hammond
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK.
| | - Mark C Rosamond
- School of Electronic & Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | - Siva Sivaraya
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK.
| | - Frank Marken
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
24
|
Zafarani HR, Mathwig K, Lemay SG, Sudhölter EJR, Rassaei L. Modulating Selectivity in Nanogap Sensors. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid Reza Zafarani
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Klaus Mathwig
- Pharmaceutical
Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Serge G. Lemay
- MESA+
Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ernst J. R. Sudhölter
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Liza Rassaei
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
25
|
Wolfrum B, Kätelhön E, Yakushenko A, Krause KJ, Adly N, Hüske M, Rinklin P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Acc Chem Res 2016; 49:2031-40. [PMID: 27602780 DOI: 10.1021/acs.accounts.6b00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.
Collapse
Affiliation(s)
- Bernhard Wolfrum
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Enno Kätelhön
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexey Yakushenko
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kay J. Krause
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nouran Adly
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Hüske
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Rinklin
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| |
Collapse
|