1
|
Peshkov A, McGaffigan S, Quillen AC. Synchronized oscillations in swarms of nematode Turbatrix aceti. SOFT MATTER 2022; 18:1174-1182. [PMID: 35029257 DOI: 10.1039/d1sm01572a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
| | - Sonia McGaffigan
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
| | - Alice C Quillen
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
2
|
Quillen AC, Smucker JP, Peshkov A. Boids in a loop: Self-propelled particles within a flexible boundary. Phys Rev E 2020; 101:052618. [PMID: 32575281 DOI: 10.1103/physreve.101.052618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 11/07/2022]
Abstract
We numerically explore the behavior of repelling and aligning self-propelled polar particles (boids) in two dimensions enclosed by a damped flexible and elastic loop-shaped boundary. We observe disordered, polar ordered, jammed, and circulating states. The latter produce a rich variety of boundary shapes, including circles, ovals, irregulars, ruffles, or sprockets, depending upon the bending moment of the boundary and the boundary to particle mass ratio. With the exception of the circulating states with nonround boundaries, states resemble those exhibited by attracting self-propelled particles, but here the confining boundary acts in place of a cohesive force. We attribute the formation of ruffles to instability mediated by pressure on the boundary when the speed of waves on the boundary approximately matches the self-propelled particle's swim speed.
Collapse
Affiliation(s)
- A C Quillen
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA
| | - J P Smucker
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA.,Department of Physics, Pennsylvania State University, Behrend, Pennsylvania 16513, USA
| | - A Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA
| |
Collapse
|
3
|
Das D, Lauga E. Transition to bound states for bacteria swimming near surfaces. Phys Rev E 2019; 100:043117. [PMID: 31770991 DOI: 10.1103/physreve.100.043117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 11/07/2022]
Abstract
It is well known that flagellated bacteria swim in circles near surfaces. However, recent experiments have shown that a sulfide-oxidizing bacterium named Thiovulum majus can transition from swimming in circles to a surface bound state where it stops swimming while remaining free to move laterally along the surface. In this bound state, the cell rotates perpendicular to the surface with its flagella pointing away from it. Using numerical simulations and theoretical analysis, we demonstrate the existence of a fluid-structure interaction instability that causes cells with relatively short flagella to become surface bound.
Collapse
Affiliation(s)
- Debasish Das
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
4
|
Savoie W, Berrueta TA, Jackson Z, Pervan A, Warkentin R, Li S, Murphey TD, Wiesenfeld K, Goldman DI. A robot made of robots: Emergent transport and control of a smarticle ensemble. Sci Robot 2019; 4:4/34/eaax4316. [DOI: 10.1126/scirobotics.aax4316] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/31/2019] [Indexed: 11/02/2022]
Abstract
Robot locomotion is typically generated by coordinated integration of single-purpose components, like actuators, sensors, body segments, and limbs. We posit that certain future robots could self-propel using systems in which a delineation of components and their interactions is not so clear, becoming robust and flexible entities composed of functional components that are redundant and generic and can interact stochastically. Control of such a collective becomes a challenge because synthesis techniques typically assume known input-output relationships. To discover principles by which such future robots can be built and controlled, we study a model robophysical system: planar ensembles of periodically deforming smart, active particles—smarticles. When enclosed, these individually immotile robots could collectively diffuse via stochastic mechanical interactions. We show experimentally and theoretically that directed drift of such a supersmarticle could be achieved via inactivation of individual smarticles and used this phenomenon to generate endogenous phototaxis. By numerically modeling the relationship between smarticle activity and transport, we elucidated the role of smarticle deactivation on supersmarticle dynamics from little data—a single experimental trial. From this mapping, we demonstrate that the supersmarticle could be exogenously steered anywhere in the plane, expanding supersmarticle capabilities while simultaneously enabling decentralized closed-loop control. We suggest that the smarticle model system may aid discovery of principles by which a class of future “stochastic” robots can rely on collective internal mechanical interactions to perform tasks.
Collapse
|
5
|
Svenšek D, Pleiner H, Brand HR. A dynamic preferred direction model for the self-organization dynamics of bacterial microfluidic pumping. SOFT MATTER 2019; 15:2032-2042. [PMID: 30724307 DOI: 10.1039/c9sm00023b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is known that some flagellated bacteria like Serratia marcescens, when deposited and affixed onto a surface to form a "bacterial carpet", self-organize in a collective motion of the flagella that is capable of pumping fluid through microfluidic channels. We set up a continuum model comprising two macroscopic variables that is capable of describing this self-organization mechanism as well as quantifying it to the extent that an agreement with the experimentally observed channel width dependence of the pumping is reached. The activity is introduced through a collective angular velocity of the helical flagella rotation, which is an example of a dynamic macroscopic preferred direction. Our model supports and quantifies the view that the self-coordination is due to a positive feedback loop between the bacterial flagella and the local flow generated by their rotation. Moreover, our results indicate that this biological active system is operating close to the self-organization threshold.
Collapse
Affiliation(s)
- Daniel Svenšek
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
6
|
Dauparas J, Das D, Lauga E. Helical micropumps near surfaces. BIOMICROFLUIDICS 2018; 12:014108. [PMID: 29430273 PMCID: PMC5775097 DOI: 10.1063/1.5012070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/04/2018] [Indexed: 05/17/2023]
Abstract
Recent experiments proposed to use confined bacteria in order to generate flows near surfaces. We develop a mathematical and a computational model of this fluid transport using a linear superposition of fundamental flow singularities. The rotation of a helical bacterial flagellum induces both a force and a torque on the surrounding fluid, both of which lead to a net flow along the surface. The combined flow is in general directed at an angle to the axis of the flagellar filament. The optimal pumping is thus achieved when bacteria are tilted with respect to the direction in which one wants to move the fluid, in good agreement with experimental results. We further investigate the optimal helical shapes to be used as micropumps near surfaces and show that bacterial flagella are nearly optimal, a result which could be relevant to the expansion of bacterial swarms.
Collapse
Affiliation(s)
- Justas Dauparas
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
| | - Debasish Das
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
| |
Collapse
|
7
|
Bai Y, Gao M, Wen L, He C, Chen Y, Liu C, Fu X, Huang S. Applications of Microfluidics in Quantitative Biology. Biotechnol J 2017; 13:e1700170. [PMID: 28976637 DOI: 10.1002/biot.201700170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/03/2017] [Indexed: 01/15/2023]
Abstract
Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future.
Collapse
Affiliation(s)
- Yang Bai
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Meng Gao
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Lingling Wen
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Caiyun He
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuan Chen
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chenli Liu
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiongfei Fu
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Shuqiang Huang
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
8
|
Lam AT, Samuel-Gama KG, Griffin J, Loeun M, Gerber LC, Hossain Z, Cira NJ, Lee SA, Riedel-Kruse IH. Device and programming abstractions for spatiotemporal control of active micro-particle swarms. LAB ON A CHIP 2017; 17:1442-1451. [PMID: 28322404 DOI: 10.1039/c7lc00131b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a hardware setup and a set of executable commands for spatiotemporal programming and interactive control of a swarm of self-propelled microscopic agents inside a microfluidic chip. In particular, local and global spatiotemporal light stimuli are used to direct the motion of ensembles of Euglena gracilis, a unicellular phototactic organism. We develop three levels of programming abstractions (stimulus space, swarm space, and system space) to create a scripting language for directing swarms. We then implement a multi-level proof-of-concept biotic game using these commands to demonstrate their utility. These device and programming concepts will enhance our capabilities for manipulating natural and synthetic swarms, with future applications for on-chip processing, diagnostics, education, and research on collective behaviors.
Collapse
Affiliation(s)
- Amy T Lam
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Karina G Samuel-Gama
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Jonathan Griffin
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Matthew Loeun
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Lukas C Gerber
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Zahid Hossain
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Nate J Cira
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Seung Ah Lee
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| | - Ingmar H Riedel-Kruse
- Stanford University, 318 Campus Drive, Clark Center Room E350A, Stanford, CA 94305, USA.
| |
Collapse
|