1
|
Fluegel LL, Deng MR, Su P, Kalkreuter E, Yang D, Rudolf JD, Dong LB, Shen B. Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization. J Ind Microbiol Biotechnol 2024; 51:kuae003. [PMID: 38262768 PMCID: PMC10847714 DOI: 10.1093/jimb/kuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery. ONE-SENTENCE SUMMARY Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
| | - Ming-Rong Deng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ping Su
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Kung JW, Meier AK, Willistein M, Weidenweber S, Demmer U, Ermler U, Boll M. Structural Basis of Cyclic 1,3-Diene Forming Acyl-Coenzyme A Dehydrogenases. Chembiochem 2021; 22:3173-3177. [PMID: 34555236 PMCID: PMC9293079 DOI: 10.1002/cbic.202100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The biologically important, FAD‐containing acyl‐coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti‐1,2‐elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4‐elimination at C3 and C6 of cyclohex‐1‐ene‐1‐carboxyl‐CoA (Ch1CoA) to cyclohex‐1,5‐diene‐1‐carboxyl‐CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl‐CoA. Based on high‐resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD‐N5 to favor the biologically relevant C3,C6‐ over the C3,C4‐dehydrogenation activity. The C1,C2‐dehydrogenation activity was regained by structure‐inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3‐diene building blocks.
Collapse
Affiliation(s)
- Johannes W Kung
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Anne-Katrin Meier
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Sina Weidenweber
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
4
|
Zheng CJ, Kalkreuter E, Fan BY, Liu YC, Dong LB, Shen B. PtmC Catalyzes the Final Step of Thioplatensimycin, Thioplatencin, and Thioplatensilin Biosynthesis and Expands the Scope of Arylamine N-Acetyltransferases. ACS Chem Biol 2021; 16:96-105. [PMID: 33314918 DOI: 10.1021/acschembio.0c00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The members of the arylamine N-acetyltransferase (NAT) family of enzymes are important for their many roles in xenobiotic detoxification in bacteria and humans. However, very little is known about their roles outside of detoxification or their specificities for acyl donors larger than acetyl-CoA. Herein, we report the detailed study of PtmC, an unusual NAT homologue encoded in the biosynthetic gene cluster for thioplatensimycin, thioplatencin, and a newly reported scaffold, thioplatensilin, thioacid-containing diterpenoids and highly potent inhibitors of bacterial and mammalian fatty acid synthases. As the final enzyme of the pathway, PtmC is responsible for the selection of a thioacid arylamine over its cognate carboxylic acid and coupling to at least three large, 17-carbon ketolide-CoA substrates. Therefore, this study uses a combined approach of enzymology and molecular modeling to reveal how PtmC has evolved from the canonical NAT scaffold into a key part of a natural combinatorial biosynthetic pathway. Additionally, genome mining has revealed the presence of other related NATs located within natural product biosynthetic gene clusters. Thus, findings from this study are expected to expand our knowledge of how enzymes evolve for expanded substrate diversity and enable additional predictions about the activities of NATs involved in natural product biosynthesis and xenobiotic detoxification.
Collapse
|
5
|
Xu ZF, Bo ST, Wang MJ, Shi J, Jiao RH, Sun Y, Xu Q, Tan RX, Ge HM. Discovery and biosynthesis of bosamycins from Streptomyces sp. 120454. Chem Sci 2020; 11:9237-9245. [PMID: 34094195 PMCID: PMC8161544 DOI: 10.1039/d0sc03469j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nonribosomal peptides (NRPs) that are synthesized by modular megaenzymes known as nonribosomal peptide synthetases (NRPSs) are a rich source for drug discovery. By targeting an unusual NRPS architecture, we discovered an unusual biosynthetic gene cluster (bsm) from Streptomyces sp. 120454 and identified that it was responsible for the biosynthesis of a series of novel linear peptides, bosamycins. The bsm gene cluster contains a unique monomodular NRPS, BsmF, that contains a cytochrome P450 domain at the N-terminal. BsmF (P450 + A + T) can selectively activate tyrosine with its adenylation (A) domain, load it onto the thiolation (T) domain, and then hydroxylate tyrosine to form 5-OH tyrosine with the P450 domain. We demonstrated a NRPS assembly line for the formation of bosamycins by genetic and biochemical analysis and heterologous expression. Our work reveals a genome mining strategy targeting a unique NRPS domain for the discovery of novel NRPs.
Collapse
Affiliation(s)
- Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Sheng Tao Bo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Mei Jing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
6
|
Steele AD, Teijaro CN, Yang D, Shen B. Leveraging a large microbial strain collection for natural product discovery. J Biol Chem 2019; 294:16567-16576. [PMID: 31570525 DOI: 10.1074/jbc.rev119.006514] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Throughout history, natural products have significantly contributed to the discovery of novel chemistry, drug leads, and tool molecules to probe and address complex challenges in biology and medicine. Recent microbial genome sequencing efforts have uncovered many microbial biosynthetic gene clusters without an associated natural product. This means that the natural products isolated to date do not fully reflect the biosynthetic potential of microbial strains. This observation has rejuvenated the natural product community and inspired a return to microbial strain collections. Mining large microbial strain collections with the most current technologies in genome sequencing, bioinformatics, and high-throughput screening techniques presents new opportunities in natural product discovery. In this review, we report on the newly expanded microbial strain collection at The Scripps Research Institute, which represents one of the largest and most diverse strain collections in the world. Two complementary approaches, i.e. structure-centric and function-centric, are presented here to showcase how to leverage a large microbial strain collection for natural product discovery and to address challenges and harness opportunities for future efforts. Highlighted examples include the discovery of alternative producers of known natural products with superior growth characteristics and high titers, novel analogs of privileged scaffolds, novel natural products, and new activities of known and new natural products. We anticipate that this large microbial strain collection will facilitate the discovery of new natural products for many applications.
Collapse
Affiliation(s)
- Andrew D Steele
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458
| | | | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458.,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, Florida 33458
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458 .,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, Florida 33458.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
7
|
Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:12406-12412. [PMID: 31291107 DOI: 10.1021/jacs.9b06183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 β-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a μ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changsoo Chang
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- Department of Biosciences , Rice University , Houston , Texas 77030 , United States
| | | |
Collapse
|
8
|
Teijaro CN, Adhikari A, Shen B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J Ind Microbiol Biotechnol 2019; 46:433-444. [PMID: 30426283 PMCID: PMC6405299 DOI: 10.1007/s10295-018-2094-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
Recent advances and emerging technologies for metabolic pathway engineering and synthetic biology have transformed the field of natural product discovery, production, and engineering. Despite these advancements, there remain many challenges in understanding how biosynthetic gene clusters are silenced or activated, including changes in the transcription of key biosynthetic and regulatory genes. This knowledge gap is highlighted by the success and failed attempts of manipulating regulatory genes within biosynthetic gene clusters in both native producers and heterologous hosts. These complexities make the choice of native producers versus heterologous hosts, fermentation medium, and supply of precursors crucial factors in achieving the production of the target natural products and engineering designer analogs. Nature continues to serve as inspiration for filling the knowledge gaps and developing new research strategies. By exploiting the evolutionary power of nature, alternative producers, with the desired genetic amenability and higher titers of the target natural products, and new strains, harboring gene clusters that encode evolutionary optimized congeners of the targeted natural product scaffolds, can be discovered. These newly identified strains can serve as an outstanding biotechnology platform for the engineered production of sufficient quantities of the target natural products and their analogs, enabling biosynthetic studies and potential therapeutic applications. These challenges and opportunities are showcased herein using fredericamycin, iso-migrastatin, platencin and platensimycin, the enediynes of C-1027, tiancimycin, and yangpumicin, and the leinamycin family of natural products.
Collapse
Affiliation(s)
- Christiana N Teijaro
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
9
|
Dong LB, Zhang X, Rudolf JD, Deng MR, Kalkreuter E, Cepeda AJ, Renata H, Shen B. Cryptic and Stereospecific Hydroxylation, Oxidation, and Reduction in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:4043-4050. [PMID: 30735041 DOI: 10.1021/jacs.8b13452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoids of ent-kauranol and ent-atiserene biosynthetic origin. C7 oxidation in the B-ring plays a key biosynthetic role in generating structural complexity known for ent-kaurane and ent-atisane derived diterpenoids. While all three oxidation patterns, α-hydroxyl, β-hydroxyl, and ketone, at C7 are seen in both the ent-kaurane and ent-atisane derived diterpenoids, their biosynthetic origins remain largely unknown. We previously established that PTM and PTN are produced by a single biosynthetic machinery, featuring cryptic C7 oxidations at the B-rings that transform the ent-kauranol and ent-atiserene derived precursors into the characteristic PTM and PTN scaffolds. Here, we report a three-enzyme cascade affording C7 α-hydroxylation in PTM and PTN biosynthesis. Combining in vitro and in vivo studies, we show that PtmO3 and PtmO6 are two functionally redundant α-ketoglutarate-dependent dioxygenases that generate a cryptic C7 β-hydroxyl on each of the ent-kauranol and ent-atiserene scaffolds, and PtmO8 and PtmO1, a pair of NAD+/NADPH-dependent dehydrogenases, subsequently work in concert to invert the C7 β-hydroxyl to α-hydroxyl via a C7 ketone intermediate. PtmO3 and PtmO6 represent the first dedicated C7 β-hydroxylases characterized to date and, together with PtmO8 and PtmO1, provide an account for the biosynthetic origins of all three C7 oxidation patterns that may shed light on other B-ring modifications in bacterial, plant, and fungal diterpenoid biosynthesis. Given their unprecedented activities in C7 oxidations, PtmO3, PtmO6, PtmO8, and PtmO1 enrich the growing toolbox of novel enzymes that could be exploited as biocatalysts to rapidly access complex diterpenoid natural products.
Collapse
|
10
|
Mantravadi PK, Kalesh KA, Dobson RCJ, Hudson AO, Parthasarathy A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics (Basel) 2019; 8:E8. [PMID: 30682820 PMCID: PMC6466574 DOI: 10.3390/antibiotics8010008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogenic antibiotic resistant bacteria pose one of the most important health challenges of the 21st century. The overuse and abuse of antibiotics coupled with the natural evolutionary processes of bacteria has led to this crisis. Only incremental advances in antibiotic development have occurred over the last 30 years. Novel classes of molecules, such as engineered antibodies, antibiotic enhancers, siderophore conjugates, engineered phages, photo-switchable antibiotics, and genome editing facilitated by the CRISPR/Cas system, are providing new avenues to facilitate the development of antimicrobial therapies. The informatics revolution is transforming research and development efforts to discover novel antibiotics. The explosion of nanotechnology and micro-engineering is driving the invention of antimicrobial materials, enabling the cultivation of "uncultivable" microbes and creating specific and rapid diagnostic technologies. Finally, a revival in the ecological aspects of microbial disease management, the growth of prebiotics, and integrated management based on the "One Health" model, provide additional avenues to manage this health crisis. These, and future scientific and technological developments, must be coupled and aligned with sound policy and public awareness to address the risks posed by rising antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800 Christchurch, New Zealand.
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| | - Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| |
Collapse
|
11
|
Liu R, Deng Z, Liu T. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab Eng 2018; 50:74-84. [DOI: 10.1016/j.ymben.2018.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/26/2022]
|
12
|
Dong LB, Rudolf JD, Kang D, Wang N, He CQ, Deng Y, Huang Y, Houk KN, Duan Y, Shen B. Biosynthesis of thiocarboxylic acid-containing natural products. Nat Commun 2018; 9:2362. [PMID: 29915173 PMCID: PMC6006322 DOI: 10.1038/s41467-018-04747-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Thiocarboxylic acid-containing natural products are rare and their biosynthesis and biological significance remain unknown. Thioplatensimycin (thioPTM) and thioplatencin (thioPTN), thiocarboxylic acid congeners of the antibacterial natural products platensimycin (PTM) and platencin (PTN), were recently discovered. Here we report the biosynthetic origin of the thiocarboxylic acid moiety in thioPTM and thioPTN. We identify a thioacid cassette encoding two proteins, PtmA3 and PtmU4, responsible for carboxylate activation by coenzyme A and sulfur transfer, respectively. ThioPTM and thioPTN bind tightly to β-ketoacyl-ACP synthase II (FabF) and retain strong antibacterial activities. Density functional theory calculations of binding and solvation free energies suggest thioPTM and thioPTN bind to FabF more favorably than PTM and PTN. Additionally, thioacid cassettes are prevalent in the genomes of bacteria, implicating that thiocarboxylic acid-containing natural products are underappreciated. These results suggest that thiocarboxylic acid, as an alternative pharmacophore, and thiocarboxylic acid-containing natural products may be considered for future drug discovery. Thioplatensimycin (thioPTM) and thioplatencin (thioPTN) are recently discovered thiocarboxylic acid congeners of the antibacterial compounds PTM and PTN. Here, the authors identify a thioacid cassette encoding PtmA3 and PtmU4 that are responsible for carboxylate activation and sulfur transfer, respectively.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Dingding Kang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Nan Wang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Cyndi Qixin He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
13
|
Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme. Nat Chem Biol 2018; 14:730-737. [PMID: 29867143 PMCID: PMC6008203 DOI: 10.1038/s41589-018-0061-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/19/2018] [Indexed: 01/23/2023]
Abstract
Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.
Collapse
|
14
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
15
|
Dong LB, Rudolf JD, Lin L, Ruiz C, Cameron MD, Shen B. In vivo instability of platensimycin and platencin: Synthesis and biological evaluation of urea- and carbamate-platensimycin. Bioorg Med Chem 2017; 25:1990-1996. [PMID: 28237556 PMCID: PMC5421316 DOI: 10.1016/j.bmc.2017.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 01/10/2023]
Abstract
Platensimycin (PTM) and platencin (PTN), two natural products and promising drug leads that target bacterial and mammalian fatty acid synthases, are known to have unfavorable pharmacokinetic properties. It is not clear, however, what the metabolic fates of PTM and PTN are and no efforts have been reported to address this key roadblock in the development of these compounds as viable drug options. Here we describe the pharmacokinetics of PTM and PTN, and reveal rapid renal clearance as the primary metabolic liability with three additional sites of chemical liability: (i) amide hydrolysis, (ii) glucuronidation, and (iii) oxidation. We determined that hydrolysis is a viable clearance mechanism in vivo and synthesized two PTM analogues to address in vivo hydrolysis. Urea- and carbamate-PTM analogues showed no detectable hydrolysis in vivo, at the expense of antibacterial activity, with no further improvement in systemic exposure. The antibacterial sulfur-containing analogues PTM D1 and PTM ML14 showed significant decreases in renal clearance. These studies set the stage for continued generation of PTM and PTN analogues in an effort to improve their pharmacokinetics while retaining or improving their biological activities.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Claudia Ruiz
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States; Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
16
|
Qiu L, Tian K, Pan J, Jiang L, Yang H, Zhu X, Shen B, Duan Y, Huang Y. A Facile Semi-Synthetic Approach towards Halogen-Substituted Aminobenzoic Acid Analogues of Platensimycin. Tetrahedron 2017; 73:771-775. [PMID: 28626267 PMCID: PMC5471356 DOI: 10.1016/j.tet.2016.12.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Platensimycin (PTM), produced by several strains of Streptomyces platensis, is a promising drug lead for infectious diseases and diabetes. The recent pilot-scale production of PTM from S. platensis SB12026 has set the stage for the facile semi-synthesis of a focused library of PTM analogues. In this study, gram-quantity of platensic acid (PTMA) was prepared by the sulfuric acid-catalyzed ethanolysis of PTM, followed by a mild hydrolysis in aqueous lithium hydroxide. Three PTMA esters were also obtained in near quantitative yields in a single step, suggesting a facile route to make PTMA aliphatic esters. 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU)-catalyzed coupling of PTMA and 33 aminobenzoates resulted in the synthesis of 28 substituted aminobenzoate analogues of PTM, among which 26 of them were reported for the first time. Several of the PTM analogues showed weak antibacterial activity against methicillin-resistant Staphylococcus aureus. Our study supported the potential utility to integrate natural product biosynthetic and semi-synthetic approaches for structure diversification.
Collapse
Affiliation(s)
- Lin Qiu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Kai Tian
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Lin Jiang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Hu Yang
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410013, China
| |
Collapse
|
17
|
Rudolf JD, Dong LB, Manoogian K, Shen B. Biosynthetic Origin of the Ether Ring in Platensimycin. J Am Chem Soc 2016; 138:16711-16721. [PMID: 27966343 PMCID: PMC5466352 DOI: 10.1021/jacs.6b09818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoid natural products that target bacterial and mammalian fatty acid synthases. PTM and PTN feature varying diterpene-derived ketolides that are linked to the same 3-amino-2,4-dihydroxybenzoic acid moiety. As a result, PTM is a selective inhibitor for FabF/FabB, while PTN is a dual inhibitor of FabF/FabB and FabH. We previously determined that the PTM cassette, consisting of five genes found in the ptm, but not ptn, gene cluster, partitions the biosynthesis of the PTM and PTN diterpene-derived ketolides. We now report investigation of the PTM cassette through the construction of diterpene production systems in E. coli and genetic manipulation in the PTM-PTN dual overproducer Streptomyces platensis SB12029, revealing two genes, ptmT3 and ptmO5, that are responsible for the biosynthetic divergence between the PTM and PTN diterpene-derived ketolides. PtmT3, a type I diterpene synthase, was determined to be a (16R)-ent-kauran-16-ol synthase, the first of its kind found in bacteria. PtmO5, a cytochrome P450 monooxygenase, is proposed to catalyze the formation of the characteristic 11S,16S-ether ring found in PTM. Inactivation of ptmO5 in SB12029 afforded the ΔptmO5 mutant SB12036 that accumulated nine PTM and PTN congeners, seven of which were new, including seven 11-deoxy-16R-hydroxy-PTM congeners. The two fully processed PTM analogues showed antibacterial activities, albeit lower than that of PTM, indicating that the ether ring, or minimally the stereochemistry of the hydroxyl group at C-16, is crucial for the activity of PTM.
Collapse
Affiliation(s)
- Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Karina Manoogian
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
18
|
Dong LB, Rudolf JD, Shen B. Antibacterial sulfur-containing platensimycin and platencin congeners from Streptomyces platensis SB12029. Bioorg Med Chem 2016; 24:6348-6353. [PMID: 27134119 PMCID: PMC5063666 DOI: 10.1016/j.bmc.2016.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
The platensimycin (PTM) and platencin (PTN) class of natural products are promising drug leads that target bacterial and mammalian fatty acid synthases. Natural congeners and synthetic analogues of PTM and PTN have been instrumental in determining their structure-activity relationships, with only a few analogues retaining the potencies of PTM and PTN. Here we describe the identification and isolation of two new sulfur-containing PTM congeners (3 and 5) from the engineered dual PTM-PTN overproducing Streptomyces platensis SB12029. Structure elucidation of platensimycin D1 (5), a sulfur-containing PTM pseudo-dimer, revealed the existence of its presumptive thioacid precursor (3). The unstable thioacid 3 was isolated and confirmed by structural characterization of its permethylated product (6). LC-MS analysis of crude extracts of SB12029 confirmed the presence of the thioacid analogue of PTN (4). The minimum inhibitory concentration (MIC) was determined for 5 revealing retention of the strong antibacterial activity of PTM.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, United States; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, United States.
| |
Collapse
|
19
|
Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine. Biochem Pharmacol 2016; 133:139-151. [PMID: 27865713 DOI: 10.1016/j.bcp.2016.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022]
Abstract
Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so.
Collapse
|
20
|
Abstract
Inactivation of ptmB1, ptmB2, ptmT2, or ptmC in Streptomyces platensis SB12029, a platensimycin (PTM) and platencin (PTN) overproducer, revealed that PTM and PTN biosynthesis features two distinct moieties that are individually constructed and convergently coupled to afford PTM and PTN. A focused library of PTM and PTN analogues was generated by mutasynthesis in the ΔptmB1 mutant S. platensis SB12032. Of the 34 aryl variants tested, 18 were incorporated with high titers.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
21
|
Rudolf JD, Dong LB, Cao H, Hatzos-Skintges C, Osipiuk J, Endres M, Chang CY, Ma M, Babnigg G, Joachimiak A, Phillips GN, Shen B. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase. J Am Chem Soc 2016; 138:10905-15. [PMID: 27490479 PMCID: PMC5013971 DOI: 10.1021/jacs.6b04317] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Hongnan Cao
- Department of Biosciences, Rice University , Houston, Texas 77005, United States
| | - Catherine Hatzos-Skintges
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Michael Endres
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - George N Phillips
- Department of Biosciences, Rice University , Houston, Texas 77005, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States.,Department of Molecular Therapeutics, The Scripps Research Institute , Jupiter, Florida 33458, United States.,Natural Products Library Initiative, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
22
|
Shi J, Pan J, Liu L, Yang D, Lu S, Zhu X, Shen B, Duan Y, Huang Y. Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026. J Ind Microbiol Biotechnol 2016; 43:1027-35. [PMID: 27126098 DOI: 10.1007/s10295-016-1769-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022]
Abstract
Platensimycin (PTM) and platencin (PTN), isolated from several strains of Streptomyces platensis are potent antibiotics against multi-drug resistant bacteria. PTM was also shown to have antidiabetic and antisteatotic activities in mouse models. Through a novel genome-mining method, we have recently identified six PTM and PTN dual-producing strains, and generated several mutants with improved production of PTM or PTN by inactivating the pathway-specific transcriptional repressor gene ptmR1. Among them, S. platensis SB12026 gave the highest titer of 310 mg/L for PTM. In this study, we now report titer improvement by medium and fermentation optimization and pilot-scale production and isolation of PTM from SB12026. The fermentation medium optimization was achieved by manipulating the carbon and nitrogen sources, as well as the inorganic salts. The highest titer of 1560 mg/L PTM was obtained in 15-L fermentors, using a formulated medium mainly containing soluble starch, soybean flour, morpholinepropanesulfonic acid sodium salt and CaCO3. In addition, a polyamide chromatographic step was applied to facilitate the purification and 45.14 g of PTM was successfully obtained from a 60 L scale fermentation. These results would speed up the future development of PTM as human medicine.
Collapse
Affiliation(s)
- Jun Shi
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Ling Liu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Songquan Lu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410013, Hunan, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410013, Hunan, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410013, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| |
Collapse
|
23
|
Rudolf JD, Yan X, Shen B. Genome neighborhood network reveals insights into enediyne biosynthesis and facilitates prediction and prioritization for discovery. J Ind Microbiol Biotechnol 2016; 43:261-76. [PMID: 26318027 PMCID: PMC4753101 DOI: 10.1007/s10295-015-1671-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/09/2015] [Indexed: 01/24/2023]
Abstract
The enediynes are one of the most fascinating families of bacterial natural products given their unprecedented molecular architecture and extraordinary cytotoxicity. Enediynes are rare with only 11 structurally characterized members and four additional members isolated in their cycloaromatized form. Recent advances in DNA sequencing have resulted in an explosion of microbial genomes. A virtual survey of the GenBank and JGI genome databases revealed 87 enediyne biosynthetic gene clusters from 78 bacteria strains, implying that enediynes are more common than previously thought. Here we report the construction and analysis of an enediyne genome neighborhood network (GNN) as a high-throughput approach to analyze secondary metabolite gene clusters. Analysis of the enediyne GNN facilitated rapid gene cluster annotation, revealed genetic trends in enediyne biosynthetic gene clusters resulting in a simple prediction scheme to determine 9- versus 10-membered enediyne gene clusters, and supported a genomic-based strain prioritization method for enediyne discovery.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
24
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|