1
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
2
|
Kim KJ, Moon SJ, Park KS, Tagkopoulos I. Network-based modeling of drug effects on disease module in systemic sclerosis. Sci Rep 2020; 10:13393. [PMID: 32770109 PMCID: PMC7414841 DOI: 10.1038/s41598-020-70280-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
The network-based proximity between drug targets and disease genes can provide novel insights regarding the repercussions, interplay, and repositioning of drugs in the context of disease. Current understanding and treatment for reversing of the fibrotic process is limited in systemic sclerosis (SSc). We have developed a network-based analysis for drug effects that takes into account the human interactome network, proximity measures between drug targets and disease-associated genes, genome-wide gene expression and disease modules that emerge through pertinent analysis. Currently used and potential drugs showed a wide variation in proximity to SSc-associated genes and distinctive proximity to the SSc-relevant pathways, depending on their class and targets. Tyrosine kinase inhibitors (TyKIs) approach disease gene through multiple pathways, including both inflammatory and fibrosing processes. The SSc disease module includes the emerging molecular targets and is in better accord with the current knowledge of the pathophysiology of the disease. In the disease-module network, the greatest perturbing activity was shown by nintedanib, followed by imatinib, dasatinib, and acetylcysteine. Suppression of the SSc-relevant pathways and alleviation of the skin fibrosis was remarkable in the inflammatory subsets of the SSc patients receiving TyKI therapy. Our results show that network-based drug-disease proximity offers a novel perspective into a drug’s therapeutic effect in the SSc disease module. This could be applied to drug combinations or drug repositioning, and be helpful guiding clinical trial design and subgroup analysis.
Collapse
Affiliation(s)
- Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,St. Vincent's Hospital, 93 Jungbu-daero, Paldal-gu, Suwon, Gyeonggi-do, 16247, Republic of Korea.
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, CA, USA. .,Genome Center, University of California, Davis, CA, USA. .,AI Institute for Next-Generation Food Systems, AIFS, Davis, CA, USA.
| |
Collapse
|
3
|
Wang CC, Zhao Y, Chen X. Drug-pathway association prediction: from experimental results to computational models. Brief Bioinform 2020; 22:5835554. [PMID: 32393976 DOI: 10.1093/bib/bbaa061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Effective drugs are urgently needed to overcome human complex diseases. However, the research and development of novel drug would take long time and cost much money. Traditional drug discovery follows the rule of one drug-one target, while some studies have demonstrated that drugs generally perform their task by affecting related pathway rather than targeting single target. Thus, the new strategy of drug discovery, namely pathway-based drug discovery, have been proposed. Obviously, identifying associations between drugs and pathways plays a key role in the development of pathway-based drug discovery. Revealing the drug-pathway associations by experiment methods would take much time and cost. Therefore, some computational models were established to predict potential drug-pathway associations. In this review, we first introduced the background of drug and the concept of drug-pathway associations. Then, some publicly accessible databases and web servers about drug-pathway associations were listed. Next, we summarized some state-of-the-art computational methods in the past years for inferring drug-pathway associations and divided these methods into three classes, namely Bayesian spare factor-based, matrix decomposition-based and other machine learning methods. In addition, we introduced several evaluation strategies to estimate the predictive performance of various computational models. In the end, we discussed the advantages and limitations of existing computational methods and provided some suggestions about the future directions of the data collection and the calculation models development.
Collapse
|
4
|
Pathania S, Randhawa V, Kumar M. Identifying potential entry inhibitors for emerging Nipah virus by molecular docking and chemical-protein interaction network. J Biomol Struct Dyn 2019; 38:5108-5125. [PMID: 31771426 DOI: 10.1080/07391102.2019.1696705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shivalika Pathania
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh, India
| | - Vinay Randhawa
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh, India
| |
Collapse
|
5
|
Li W, Zhang Y, He Y, Wang Y, Guo S, Zhao X, Feng Y, Song Z, Zou Y, He W, Chen L. Candidate gene prioritization for non-communicable diseases based on functional information: Case studies. J Biomed Inform 2019; 93:103155. [PMID: 30902596 DOI: 10.1016/j.jbi.2019.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Candidate gene prioritization for complex non-communicable diseases is essential to understanding the mechanism and developing better means for diagnosing and treating these diseases. Many methods have been developed to prioritize candidate genes in protein-protein interaction (PPI) networks. Integrating functional information/similarity into disease-related PPI networks could improve the performance of prioritization. In this study, a candidate gene prioritization method was proposed for non-communicable diseases considering disease risks transferred between genes in weighted disease PPI networks with weights for nodes and edges based on functional information. Here, three types of non-communicable diseases with pathobiological similarity, Type 2 diabetes (T2D), coronary artery disease (CAD) and dilated cardiomyopathy (DCM), were used as case studies. Literature review and pathway enrichment analysis of top-ranked genes demonstrated the effectiveness of our method. Better performance was achieved after comparing our method with other existing methods. Pathobiological similarity among these three diseases was further investigated for common top-ranked genes to reveal their pathogenesis.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yihua Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Xilei Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yuyan Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Zhaona Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yuqing Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Weiming He
- Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150000, Heilongjiang Province, China.
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, Heilongjiang Province, China.
| |
Collapse
|
6
|
Katsila T, Matsoukas MT. How far have we come with contextual data integration in drug discovery? Expert Opin Drug Discov 2018; 13:791-794. [DOI: 10.1080/17460441.2018.1504767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Minos-Timotheos Matsoukas
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Cloudpharm P.C., Athens, Greece
| |
Collapse
|
7
|
A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase. Sci Rep 2017; 7:44912. [PMID: 28322292 PMCID: PMC5359624 DOI: 10.1038/srep44912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Valosin-containing protein (VCP/p97) ATPase (a.k.a. Cdc48) is a key member of the ER-associated protein degradation (ERAD) pathway. ERAD and VCP/p97 have been implicated in a multitude of human diseases, such as neurodegenerative diseases and cancer. Inhibition of VCP/p97 induces proteotoxic ER stress and cell death in cancer cells, making it an attractive target for cancer treatment. However, no drugs exist against this protein in the market. Repositioning of drugs towards new indications is an attractive alternative to the de novo drug development due to the potential for significantly shorter time to clinical translation. Here, we employed an integrative strategy for the repositioning of drugs as novel inhibitors of the VCP/p97 ATPase. We integrated structure-based virtual screening with the chemical genomics analysis of drug molecular signatures, and identified several candidate inhibitors of VCP/p97 ATPase. Importantly, experimental validation with cell-based and in vitro ATPase assays confirmed three (ebastine, astemizole and clotrimazole) out of seven tested candidates (~40% true hit rate) as direct inhibitors of VCP/p97 and ERAD. This study introduces an effective integrative strategy for drug repositioning, and identified new drugs against the VCP/p97/ERAD pathway in human diseases.
Collapse
|
8
|
Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2370252. [PMID: 28053689 PMCID: PMC5174186 DOI: 10.1155/2016/2370252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases.
Collapse
|