1
|
Yu Q, Kim T, Rajagopal V. Role of actin filaments and cis binding in cadherin clustering and patterning. PLoS Comput Biol 2022; 18:e1010257. [PMID: 35802763 PMCID: PMC9299298 DOI: 10.1371/journal.pcbi.1010257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/20/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cadherins build up clusters to maintain intercellular contact through trans and cis (lateral) bindings. Meanwhile, interactions between cadherin and the actin cytoskeleton through cadherin/F-actin linkers can affect cadherin dynamics by corralling and tethering cadherin molecules locally. Despite many experimental studies, a quantitative, mechanistic understanding of how cadherin and actin cytoskeleton interactions regulate cadherin clustering does not exist. To address this gap in knowledge, we developed a coarse-grained computational model of cadherin dynamics and their interaction with the actin cortex underlying the cell membrane. Our simulation predictions suggest that weak cis binding affinity between cadherin molecules can facilitate large cluster formation. We also found that cadherin movement inhibition by actin corralling is dependent on the concentration and length of actin filaments. This results in changes in cadherin clustering behaviors, as reflected by differences in cluster size and distribution as well as cadherin monomer trajectory. Strong cadherin/actin binding can enhance trans and cis interactions as well as cadherin clustering. By contrast, with weak cadherin/actin binding affinity, a competition between cadherin-actin binding and cis binding for a limited cadherin pool leads to temporary and unstable cadherin clusters.
Collapse
Affiliation(s)
- Qilin Yu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (TK); (VR)
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
- * E-mail: (TK); (VR)
| |
Collapse
|
2
|
Cortical tension initiates the positive feedback loop between cadherin and F-actin. Biophys J 2022; 121:596-606. [PMID: 35031276 PMCID: PMC8874026 DOI: 10.1016/j.bpj.2022.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Adherens junctions physically link two cells at their contact interface via extracellular binding between cadherin molecules and intracellular interactions between cadherins and the actin cytoskeleton. Cadherin and actomyosin cytoskeletal dynamics are regulated reciprocally by mechanical and chemical signals, which subsequently determine the strength of cell-cell adhesions and the emergent organization and stiffness of the tissues they form. However, an understanding of the integrated system is lacking. We present a new mechanistic computational model of intercellular junction maturation in a cell doublet to investigate the mechanochemical cross talk that regulates adherens junction formation and homeostasis. The model couples a two-dimensional lattice-based simulation of cadherin dynamics with a reaction-diffusion representation of the reorganising actomyosin network through its regulation by Rho signalling at the intracellular junction. We demonstrate that local immobilization of cadherin induces cluster formation in a cis-less-dependent manner. We then recapitulate the process of cell-cell contact formation. Our model suggests that cortical tension applied on the contact rim can explain the ring distribution of cadherin and actin filaments (F-actin) on the cell-cell contact of the cell doublet. Furthermore, we propose and test the hypothesis that cadherin and F-actin interact like a positive feedback loop, which is necessary for formation of the ring structure. Different patterns of cadherin distribution were observed as an emergent property of disturbances of this positive feedback loop. We discuss these findings in light of available experimental observations on underlying mechanisms related to cadherin/F-actin binding and the mechanical environment.
Collapse
|
3
|
Coarse-grained simulations of phase separation driven by DNA and its sensor protein cGAS. Arch Biochem Biophys 2021; 710:109001. [PMID: 34352244 DOI: 10.1016/j.abb.2021.109001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023]
Abstract
The enzyme cGAS functions as a sensor that recognizes the cytosolic DNA from foreign pathogen. The activation of the protein triggers the transcription of inflammatory genes, leading into the establishment of an antipathogen state. An interesting new discovery is that the detection of DNA by cGAS induced the formation of liquid-like droplets. However how cells regulate the formation of these droplets is still not fully understood. In order to unravel the molecular mechanism beneath the DNA-mediated phase separation of cGAS, we developed a polymer-based coarse-grained model which takes into accounts the basic structural organization in DNA and cGAS, as well as the binding properties between these biomolecules. This model was further integrated into a hybrid simulation algorithm. With this computational method, a multi-step kinetic process of aggregation between cGAS and DNA was observed. Moreover, we systematically tested the model under different concentrations and binding parameters. Our simulation results show that phase separation requires both cGAS dimerization and protein-DNA interactions, whereas polymers can be kinetically trapped in small aggregates under strong binding affinities. Additionally, we demonstrated that supramolecular assembly can be facilitated by increasing the number of functional modules in protein or DNA polymers, suggesting that multivalency and intrinsic disordered regions play positive roles in regulating phase separation. This is consistent to previous experimental evidences. Taken together, this is, to the best of our knowledge, the first computational model to study condensation of cGAS-DNA complexes. While the method can reach the timescale beyond the capability of atomic-level MD simulations, it still includes information about spatial arrangement of functional modules in biopolymers that is missing in the mean-field theory. Our work thereby adds a useful dimension to a suite of existing experimental and computational techniques to study the dynamics of phase separation in biological systems.
Collapse
|
4
|
Su Z, Wu Y. A Multiscale and Comparative Model for Receptor Binding of 2019 Novel Coronavirus and the Implication of its Life Cycle in Host Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511419 DOI: 10.1101/2020.02.20.958272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The respiratory syndrome caused by a new type of coronavirus has been emerging from China and caused more than one million death globally since December 2019. This new virus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the same receptor called Angiotensin-converting enzyme 2 (ACE2) to attack humans as the coronavirus that caused the severe acute respiratory syndrome (SARS) seventeen years ago. Both viruses recognize ACE2 through the spike proteins (S-protein) on their surfaces. It was found that the S-protein from the SARS coronavirus (SARS-CoV) bind stronger to ACE2 than SARS-CoV-2. However, function of a bio-system is often under kinetic, rather than thermodynamic, control. To address this issue, we constructed a structural model for complex formed between ACE2 and the S-protein from SARS-CoV-2, so that the rate of their association can be estimated and compared with the binding of S-protein from SARS-CoV by a multiscale simulation method. Our simulation results suggest that the association of new virus to the receptor is slower than SARS, which is consistent with the experimental data obtained very recently. We further integrated this difference of association rate between virus and receptor into a mathematical model which describes the life cycle of virus in host cells and its interplay with the innate immune system. Interestingly, we found that the slower association between virus and receptor can result in longer incubation period, while still maintaining a relatively higher level of viral concentration in human body. Our computational study therefore provides, from the molecular level, one possible explanation that this new pandemic by far spread much faster than SARS.
Collapse
|
5
|
Su Z, Dhusia K, Wu Y. Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method. Biophys J 2020; 119:2116-2126. [PMID: 33113350 DOI: 10.1016/j.bpj.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 02/02/2023] Open
Abstract
Scaffold proteins are central players in regulating the spatial-temporal organization of many important signaling pathways in cells. They offer physical platforms to downstream signaling proteins so that their transient interactions in a crowded and heterogeneous environment of cytosol can be greatly facilitated. However, most scaffold proteins tend to simultaneously bind more than one signaling molecule, which leads to the spatial assembly of multimeric protein complexes. The kinetics of these protein oligomerizations are difficult to quantify by traditional experimental approaches. To understand the functions of scaffold proteins in cell signaling, we developed a, to our knowledge, new hybrid simulation algorithm in which both spatial organization and binding kinetics of proteins were implemented. We applied this new technique to a simple network system that contains three molecules. One molecule in the network is a scaffold protein, whereas the other two are its binding targets in the downstream signaling pathway. Each of the three molecules in the system contains two binding motifs that can interact with each other and are connected by a flexible linker. By applying the new simulation method to the model, we show that the scaffold proteins will promote not only thermodynamics but also kinetics of cell signaling given the premise that the interaction between the two signaling molecules is transient. Moreover, by changing the flexibility of the linker between two binding motifs, our results suggest that the conformational fluctuations in a scaffold protein play a positive role in recruiting downstream signaling molecules. In summary, this study showcases the capability of computational simulation in understanding the general principles of scaffold protein functions.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
6
|
Su Z, Wu Y. A computational model for understanding the oligomerization mechanisms of TNF receptor superfamily. Comput Struct Biotechnol J 2020; 18:258-270. [PMID: 32021664 PMCID: PMC6994755 DOI: 10.1016/j.csbj.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023] Open
Abstract
By recognizing members in the tumor necrosis factor (TNF) receptor superfamily, TNF ligand proteins function as extracellular cytokines to activate various signaling pathways involved in inflammation, proliferation, and apoptosis. Most ligands in TNF superfamily are trimeric and can simultaneously bind to three receptors on cell surfaces. It has been experimentally observed that the formation of these molecular complexes further triggers the oligomerization of TNF receptors, which in turn regulate the intracellular signaling processes by providing transient compartmentalization in the membrane proximal regions of cytoplasm. In order to decode the molecular mechanisms of oligomerization in TNF receptor superfamily, we developed a new computational method that can physically simulate the spatial-temporal process of binding between TNF ligands and their receptors. The simulations show that the TNF receptors can be organized into hexagonal oligomers. The formation of this spatial pattern is highly dependent not only on the molecular properties such as the affinities of trans and cis binding, but also on the cellular factors such as the concentration of TNF ligands in the extracellular area or the density of TNF receptors on cell surfaces. Moreover, our model suggests that if TNF receptors are pre-organized into dimers before ligand binding, these lateral interactions between receptor monomers can play a positive role in stabilizing the ligand-receptor interactions, as well as in regulating the kinetics of receptor oligomerization. Altogether, this method throws lights on the mechanisms of TNF ligand-receptor interactions in cellular environments.
Collapse
|
7
|
Su Z, Wu Y. Computational simulations of TNF receptor oligomerization on plasma membrane. Proteins 2019; 88:698-709. [PMID: 31710744 DOI: 10.1002/prot.25854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The interactions between tumor necrosis factors (TNFs) and their corresponding receptors (TNFRs) play a pivotal role in inflammatory responses. Upon ligand binding, TNFR receptors were found to form oligomers on cell surfaces. However, the underlying mechanism of oligomerization is not fully understood. In order to tackle this problem, molecular dynamics (MD) simulations have been applied to the complex between TNF receptor-1 (TNFR1) and its ligand TNF-α as a specific test system. The simulations on both all-atom (AA) and coarse-grained (CG) levels achieved the similar results that the extracellular domains of TNFR1 can undergo large fluctuations on plasma membrane, while the dynamics of TNFα-TNFR1 complex is much more constrained. Using the CG model with the Martini force field, we are able to simulate the systems that contain multiple TNFα-TNFR1 complexes with the timescale of microseconds. We found that complexes can aggregate into oligomers on the plasma membrane through the lateral interactions between receptors at the end of the CG simulations. We suggest that this spatial organization is essential to the efficiency of signal transduction for ligands that belong to the TNF superfamily. We further show that the aggregation of two complexes is initiated by the association between the N-terminal domains of TNFR1 receptors. Interestingly, the cis-interfaces between N-terminal regions of two TNF receptors have been observed in the previous X-ray crystallographic experiment. Therefore, we provide supportive evidence that cis-interface is of functional importance in triggering the receptor oligomerization. Taken together, our study brings insights to understand the molecular mechanism of TNF signaling.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
8
|
Chen J, Newhall J, Xie ZR, Leckband D, Wu Y. A Computational Model for Kinetic Studies of Cadherin Binding and Clustering. Biophys J 2017; 111:1507-1518. [PMID: 27705773 DOI: 10.1016/j.bpj.2016.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/02/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Cadherin is a cell-surface transmembrane receptor that mediates calcium-dependent cell-cell adhesion and is a major component of adhesive junctions. The formation of intercellular adhesive junctions is initiated by trans binding between cadherins on adjacent cells, which is followed by the clustering of cadherins via the formation of cis interactions between cadherins on the same cell membranes. Moreover, classical cadherins have multiple glycosylation sites along their extracellular regions. It was found that aberrant glycosylation affects the adhesive function of cadherins and correlates with metastatic phenotypes of several cancers. However, a mechanistic understanding of cadherin clustering during cell adhesion and the role of glycosylation in this process is still lacking. Here, we designed a kinetic model that includes multistep reaction pathways for cadherin clustering. We further applied a diffusion-reaction algorithm to numerically simulate the clustering process using a recently developed coarse-grained model. Using experimentally measured rates of trans binding between soluble E-cadherin extracellular domains, we conducted simulations of cadherin-mediated cell-cell binding kinetics, and the results are quantitatively comparable to experimental data from micropipette experiments. In addition, we show that incorporating cadherin clustering via cis interactions further increases intercellular binding. Interestingly, a two-phase kinetic profile was derived under the assumption that glycosylation regulates the kinetic rates of cis interactions. This two-phase profile is qualitatively consistent with experimental results from micropipette measurements. Therefore, our computational studies provide new, to our knowledge, insights into the molecular mechanism of cadherin-based cell adhesion.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jillian Newhall
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Deborah Leckband
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
9
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|