1
|
Wang T, Wang J, Chen L, Zhang X, Mou T, An X, Zhang J, Zhang X, Deuther-Conrad W, Huang Y, Jia H. Development of a Highly Specific 18F-Labeled Radioligand for Imaging of the Sigma-2 Receptor in Brain Tumors. J Med Chem 2023; 66:12840-12857. [PMID: 37704582 DOI: 10.1021/acs.jmedchem.3c00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Novel ligands with the 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or 5,6-dimethoxyisoindoline pharmacophore were designed and synthesized for evaluation of their structure-activity relationship to the sigma-2 (σ2) receptor and developed as suitable PET radioligands. Compound 1 was found to possess nanomolar affinity (Ki(σ1) = 2.57 nM) for the σ2 receptor, high subtype selectivity (>2000-fold), and high selectivity over 40 other receptors and transporters. Radioligand [18F]1 was prepared with radiochemical yield of 37-54%, > 99% radiochemical purity, and molar activity of 107-189 GBq/μmol. Biodistribution and blocking studies in mice and micro-PET/CT imaging of [18F]1 in rats indicated excellent binding specificity to the σ2 receptors in vivo. Micro-PET/CT imaging of [18F]1 in the U87MG glioma xenograft model demonstrated clear tumor visualization with high tumor uptake and tumor-to-background ratio. Co-injection with CM398 (5 μmol/kg) led to a remarkable reduction of tumor uptake (80%, 60-70 min), indicating high specific binding of [18F]1 in U87MG glioma xenografts.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jingqi Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tiantian Mou
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaodan An
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinming Zhang
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520-8048, United States
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
3
|
Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:918. [PMID: 37513830 PMCID: PMC10386429 DOI: 10.3390/ph16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A series of 2-(1H-indol-2-yl)-3-acrylonitrile derivatives, 2a-x, 3, 4a-b, 5a-d, 6a-b, and 7, were synthesized as potential antitumor and antimicrobial agents. The structures of the prepared compounds were evaluated based on elemental analysis, IR, 1H- and 13NMR, as well as MS spectra. X-ray crystal analysis of the representative 2-(1H-indol-2-yl)-3-acrylonitrile 2l showed that the acrylonitrile double bond was Z-configured. All compounds were screened at the National Cancer Institute (USA) for their activities against a panel of approximately 60 human tumor cell lines and the relationship between structure and in vitro antitumor activity is discussed. Compounds of interest 2l and 5a-d showed significant growth inhibition potency against various tumor cell lines with the mean midpoint GI50 values of all tests in the range of 0.38-7.91 μM. The prominent compound with remarkable activity (GI50 = 0.0244-5.06 μM) and high potency (TGI = 0.0866-0.938 μM) against some cell lines of leukemia (HL-60(TB)), non-small cell lung cancer (NCI-H522), colon cancer (COLO 205), CNS cancer (SF-539, SNB-75), ovarian cancer ((OVCAR-3), renal cancer (A498, RXF 393), and breast cancer (MDA-MB-468) was 3-[4-(dimethylamino)phenyl]-2-(1-methyl-1H-indol-2-yl)acrylonitrile (5c). Moreover, the selected 2-(1H-indol-2-yl)-3-acrylonitriles 2a-c and 2e-x were evaluated for their antibacterial and antifungal activities against Gram-positive and Gram-negative pathogens as well as Candida albicans. Among them, 2-(1H-indol-2-yl)-3-(1H-pyrrol-2-yl)acrylonitrile (2x) showed the most potent antimicrobial activity and therefore it can be considered as a lead structure for further development of antimicrobial agents. Finally, molecular docking studies as well as drug-likeness and ADME profile prediction were carried out.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Małgorzata Jarosiewicz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
4
|
QSAR-Based Computational Approaches to Accelerate the Discovery of Sigma-2 Receptor (S2R) Ligands as Therapeutic Drugs. Molecules 2021; 26:molecules26175270. [PMID: 34500703 PMCID: PMC8434483 DOI: 10.3390/molecules26175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
S2R overexpression is associated with various forms of cancer as well as both neuropsychiatric disorders (e.g., schizophrenia) and neurodegenerative diseases (Alzheimer’s disease: AD). In the present study, three ligand-based methods (QSAR modeling, pharmacophore mapping, and shape-based screening) were implemented to select putative S2R ligands from the DrugBank library comprising 2000+ entries. Four separate optimization algorithms (i.e., stepwise regression, Lasso, genetic algorithm (GA), and a customized extension of GA called GreedGene) were adapted to select descriptors for the QSAR models. The subsequent biological evaluation of selected compounds revealed that three FDA-approved drugs for unrelated therapeutic indications exhibited sub-1 uM binding affinity for S2R. In particular, the antidepressant drug nefazodone elicited a S2R binding affinity Ki = 140 nM. A total of 159 unique S2R ligands were retrieved from 16 publications for model building, validation, and testing. To our best knowledge, the present report represents the first case to develop comprehensive QSAR models sourced by pooling and curating a large assemblage of structurally diverse S2R ligands, which should prove useful for identifying new drug leads and predicting their S2R binding affinity prior to the resource-demanding tasks of chemical synthesis and biological evaluation.
Collapse
|
5
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
6
|
Lengacher R, Alberto R. Bioorganometallics: 99mTc cytectrenes, syntheses and applications in nuclear medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Mir RH, Mohi-ud-din R, Wani TU, Dar MO, Shah AJ, Lone B, Pooja C, Masoodi MH. Indole: A Privileged Heterocyclic Moiety in the Management of Cancer. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208142108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic are a class of compounds that are intricately entwined into life processes.
Almost more than 90% of marketed drugs carry heterocycles. Synthetic chemistry, in
turn, allocates a cornucopia of heterocycles. Among the heterocycles, indole, a bicyclic structure
consisting of a six-membered benzene ring fused to a five-membered pyrrole ring with
numerous pharmacophores that generate a library of various lead molecules. Due to its profound
pharmacological profile, indole got wider attention around the globe to explore it fully
in the interest of mankind. The current review covers recent advancements on indole in the
design of various anti-cancer agents acting by targeting various enzymes or receptors, including
(HDACs), sirtuins, PIM kinases, DNA topoisomerases, and σ receptors.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-ud-din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abdul Jaleel Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Bashir Lone
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Chawla Pooja
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
8
|
Indole: A privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 2019; 183:111691. [DOI: 10.1016/j.ejmech.2019.111691] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
|
9
|
Döndaş HA, Retamosa MDG, Sansano JM. Recent Development in Palladium-Catalyzed Domino Reactions: Access to Materials and Biologically Important Carbo- and Heterocycles. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00110] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H. Ali Döndaş
- Mersin University, Faculty of Pharmacy, Yenisehir Campus 33169, Yenisehir, Mersin, Turkey
| | - María de Gracia Retamosa
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - José M. Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica (ISO) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, 03080 Alicante, Spain
| |
Collapse
|
10
|
Dethe DH, Boda VK, Mandal A. Rapid One-Pot Access to Unique 3,4-Dihydrothiopyrano[3,4-b
]indol-1(9H
)-imines via Bi(OTf)3
-Catalysed Tandem Friedel-Crafts Alkylation/Thia-Michael Addition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dattatraya H. Dethe
- Department of Chemistry; Indian Institute of Technology; 208016 Kanpur India
| | - Vijay Kumar Boda
- Department of Chemistry; Indian Institute of Technology; 208016 Kanpur India
| | - Anupam Mandal
- Department of Chemistry; Indian Institute of Technology; 208016 Kanpur India
| |
Collapse
|
11
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
12
|
Franchini S, Sorbi C, Battisti UM, Tait A, Bencheva LI, Cichero E, Fossa P, Cilia A, Prezzavento O, Ronsisvalle S, Aricò G, Benassi L, Vaschieri C, Azzoni P, Magnoni C, Brasili L. Structure-Activity Relationships within a Series of σ1
and σ2
Receptor Ligands: Identification of a σ2
Receptor Agonist (BS148) with Selective Toxicity against Metastatic Melanoma. ChemMedChem 2017; 12:1893-1905. [DOI: 10.1002/cmdc.201700427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Silvia Franchini
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Claudia Sorbi
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Umberto Maria Battisti
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Annalisa Tait
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Leda Ivanova Bencheva
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Elena Cichero
- Dipartimento di Farmacia; Università degli Studi di Genova; Viale Benedetto XV 3 16132 Genova Italy
| | - Paola Fossa
- Dipartimento di Farmacia; Università degli Studi di Genova; Viale Benedetto XV 3 16132 Genova Italy
| | - Antonio Cilia
- Divisione Ricerca e Sviluppo; Recordati S.p.A.; Via Civitali 1 20148 Milano Italy
| | - Orazio Prezzavento
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Viale Andrea Doria 6 95125 Catania Italy
| | - Simone Ronsisvalle
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Viale Andrea Doria 6 95125 Catania Italy
| | - Giuseppina Aricò
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Viale Andrea Doria 6 95125 Catania Italy
| | - Luisa Benassi
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Cristina Vaschieri
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Paola Azzoni
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Cristina Magnoni
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa; Università degli Studi di Modena e Reggio Emilia; via del Pozzo 71 41124 Modena Italy
| | - Livio Brasili
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| |
Collapse
|
13
|
Solé D, Pérez-Janer F, Zulaica E, Guastavino JF, Fernández I. Pd-Catalyzed α-Arylation of Sulfones in a Three-Component Synthesis of 3-[2-(Phenyl/methylsulfonyl)ethyl]indoles. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Daniel Solé
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ferran Pérez-Janer
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ester Zulaica
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Javier F. Guastavino
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas,
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
14
|
Li D, Chen Y, Wang X, Deuther-Conrad W, Chen X, Jia B, Dong C, Steinbach J, Brust P, Liu B, Jia H. 99mTc-Cyclopentadienyl Tricarbonyl Chelate-Labeled Compounds as Selective Sigma-2 Receptor Ligands for Tumor Imaging. J Med Chem 2016; 59:934-46. [DOI: 10.1021/acs.jmedchem.5b01378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Li
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Chen
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xia Wang
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Winnie Deuther-Conrad
- Institute
of Radiopharmaceutical Cancer Research/Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Xin Chen
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bing Jia
- Medical
and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Chengyan Dong
- Interdisciplinary
Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jörg Steinbach
- Institute
of Radiopharmaceutical Cancer Research/Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Peter Brust
- Institute
of Radiopharmaceutical Cancer Research/Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Boli Liu
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongmei Jia
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|