1
|
Tamrakar A, Kumar P, Garg N, Luis SV, Pandey MD. Intracellular Zn(II) induced turn-on fluorescence of an L-phenylalanine-derived pseudopeptide. Org Biomol Chem 2023; 21:8823-8828. [PMID: 37906437 DOI: 10.1039/d3ob01337e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A C2 symmetric L-phenylalanine-derived pseudopeptide has been synthesized for selective and sensitive recognition of Zn(II) ions in aqueous-organic media. The pseudopeptidic probes exhibit intracellular Zn(II) ion-sensing capabilities as demonstrated via live-cell fluorescence studies on RAW264.7 cells. Hence, we present a bioinspired pseudopeptide for potential biological applications involving intracellular Zn(II) ion detection.
Collapse
Affiliation(s)
- Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Santiago V Luis
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. SosBaynat, s/n, E-12071 Castellón, Spain
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
2
|
López-Solís L, Companys E, Puy J, Blindauer CA, Galceran J. Direct determination of free Zn concentration in samples of biological interest. Anal Chim Acta 2022; 1229:340195. [DOI: 10.1016/j.aca.2022.340195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
|
3
|
Mahim A, Karim M, Petering DH. Zinc trafficking 1. Probing the roles of proteome, metallothionein, and glutathione. Metallomics 2021; 13:6362609. [PMID: 34472617 DOI: 10.1093/mtomcs/mfab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022]
Abstract
The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that nonspecific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high-affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase, and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione (GSH). In agreement, inclusion of GSH accelerated the reaction in a concentration-dependent manner. The implications of abundant high-affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with GSH in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.
Collapse
Affiliation(s)
- Afsana Mahim
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Mohammad Karim
- Department of Cell and Gene Therapy, PPD, Middleton, WI, USA
| | - David H Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
4
|
|
5
|
Lopez C, Park S, Edwards S, Vong S, Hou S, Lee M, Sauerland H, Lee JJ, Jeong KJ. Matrix Metalloproteinase-Deactivating Contact Lens for Corneal Melting. ACS Biomater Sci Eng 2019; 5:1195-1199. [PMID: 31692998 DOI: 10.1021/acsbiomaterials.8b01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Corneal melting is an uncontrolled, excessive degradation of cellular and extracellular components of the cornea. This potential cause of corneal blindness is caused by excessive expression of zinc-dependent matrix metalloproteinases (MMPs) and has no satisfying cure as of now. Herein, we introduce a novel therapeutic hydrogel which can be made into a contact lens to slow down the progression of corneal melting by deactivating MMPs. The hydrogel backbone is comprised of poly(2-hydroxyetyl methacrylate) (pHEMA), a main material for commercial contact lenses, and dipicolylamine (DPA) which has high affinity and selectivity towards zinc ion. Due to the high affinity towards zinc ions, the DPA-conjugated pHEMA (pDPA-HEMA) hydrogel selectively removes zinc ions from a physiological buffer and deactivates MMP-1, MMP-2 and MMP-9 within 2 hours. pDPA-HEMA hydrogel also effectively prevents degradation of porcine corneas by collagenase A, a zinc-dependent protease, whereas the corneas completely degrades within 15 hours when incubated with pHEMA hydrogel. The presence of pDPA-HEMA hydrogel does not affect the viability of keratocytes and corneal epithelial cells. Unlike the conventional MMP inhibitors (MMPi), the pDPA-HEMA hydrogel minimizes the risk of serious non-specific side effects, and provides a method to slow down the progression of corneal melting and other related ocular diseases.
Collapse
Affiliation(s)
- Chelsi Lopez
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Seth Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Selina Vong
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Minyoung Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Hunter Sauerland
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Jung-Jae Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204.,Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
6
|
Abstract
The cellular constitution of Zn-proteins and Zn-dependent signaling depend on the capacity of Zn2+ to find specific binding sites in the face of a plethora of other high affinity ligands. The most prominent of these is metallothionein (MT). It serves as a storage site for Zn2+ under various conditions, and has chemical properties that support a dynamic role for MT in zinc trafficking. Consistent with these characteristics, changing the availability of zinc for cells and tissues causes rapid alteration of zinc bound to MT. Nevertheless, zinc trafficking occurs in metallothionein-null animals and cells, hypothetically making use of proteomic binding sites to mediate the intracellular movements of zinc. Like metallothionein, the proteome contains a large concentration of proteins that strongly coordinate zinc. In this environment, free Zn2+ may be of little significance. Instead, this review sets forth the basis for the hypothesis that components of the proteome and MT jointly provide the platform for zinc trafficking.
Collapse
Affiliation(s)
- David H Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53217, USA.
| | - Afsana Mahim
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53217, USA.
| |
Collapse
|
7
|
Karim MR, Petering DH. Detection of Zn 2+ release in nitric oxide treated cells and proteome: dependence on fluorescent sensor and proteomic sulfhydryl groups. Metallomics 2017; 9:391-401. [PMID: 27918051 DOI: 10.1039/c6mt00220j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is both an important regulatory molecule in biological systems and a toxic xenobiotic. Its oxidation products react with sulfhydryl groups and either nitrosylate or oxidize them. The aerobic reaction of NO supplied by diethylamine NONOate (DEA-NO) with pig kidney LLC-PK1 cells and Zn-proteins within the isolated proteome was examined with three fluorescent zinc sensors, zinquin (ZQ), TSQ, and FluoZin-3 (FZ-3). Observations of Zn2+ labilization from Zn-proteins depended on the specific sensor used. Upon cellular exposure to DEA-NO, ZQ sequestered about 13% of the proteomic Zn2+ as Zn(ZQ)2 and additional Zn2+ as proteome·Zn-ZQ ternary complexes. TSQ, a sensor structurally related to ZQ with lower affinity for Zn2+, did not form Zn(TSQ)2. Instead, Zn2+ mobilized by DEA-NO was exclusively bound as proteome·Zn-TSQ adducts. Analogous reactions of proteome with ZQ or TSQ in vitro displayed qualitatively similar products. Titration of native proteome with Zn2+ in the presence of ZQ resulted in the sole formation of proteome·Zn-ZQ species. This result suggested that sulfhydryl groups are involved in non-specific proteomic binding of mobile Zn2+ and that the appearance of Zn(ZQ)2 after exposure of cells and proteome to DEA-NO resulted from a reduction in proteomic sulfhydryl ligands, favoring the formation of Zn(ZQ)2 instead of proteome·Zn-ZQ. With the third sensor, FluoZin-3, neither Zn-FZ-3 nor proteome·Zn-FZ-3 was detected during the reaction of proteome with DEA-NO. Instead, it reacted independently with DEA-NO with a modest enhancement of fluorescence.
Collapse
Affiliation(s)
- Mohammad R Karim
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | | |
Collapse
|
8
|
Petering DH. Reactions of the Zn Proteome with Cd2+ and Other Xenobiotics: Trafficking and Toxicity. Chem Res Toxicol 2016; 30:189-202. [DOI: 10.1021/acs.chemrestox.6b00328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- David H. Petering
- Department of Chemistry and
Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
9
|
Carpenter MC, Lo MN, Palmer AE. Techniques for measuring cellular zinc. Arch Biochem Biophys 2016; 611:20-29. [PMID: 27580940 DOI: 10.1016/j.abb.2016.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
Abstract
The development and improvement of fluorescent Zn2+ sensors and Zn2+ imaging techniques have increased our insight into this biologically important ion. Application of these tools has identified an intracellular labile Zn2+ pool and cultivated further interest in defining the distribution and dynamics of labile Zn2+. The study of Zn2+ in live cells in real time using sensors is a powerful way to answer complex biological questions. In this review, we highlight newly engineered Zn2+ sensors, methods to test whether the sensors are accessing labile Zn2+, and recent studies that point to the challenges of using such sensors. Elemental mapping techniques can complement and strengthen data collected with sensors. Both mass spectrometry-based and X-ray fluorescence-based techniques yield highly specific, sensitive, and spatially resolved snapshots of metal distribution in cells. The study of Zn2+ has already led to new insight into all phases of life from fertilization of the egg to life-threatening cancers. In order to continue building new knowledge about Zn2+ biology it remains important to critically assess the available toolset for this endeavor.
Collapse
Affiliation(s)
- Margaret C Carpenter
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States.
| | - Maria N Lo
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States.
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States.
| |
Collapse
|