1
|
Darwish ER, Babalghith AO, Bahathiq AOS, Amin AS, El-Attar MA. Synergistic optical sensing: Selective colorimetric analysis of copper in environmental and biological samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124202. [PMID: 38565052 DOI: 10.1016/j.saa.2024.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
A groundbreaking optical sensing membrane has been engineered for the accurate assessment of copper ions. The pliable poly(vinyl chloride) membrane is formulated through the integration of sodium tetraphenylborate (Na-TPB), 4-(2-hydroxy-4-nitro azobenzene)-2-methyl-quinoline (HNAMQ), and tri-n-octyl phosphine oxide (TOPO), in conjunction with o-nitrophenyl octyl ether (o-NPOE). The sensor membrane undergoes a thorough investigation of its composition to optimize performance, revealing that HNAMQ serves a dual role as both an ionophore and a chromoionophore. Simultaneously, TOPO contributes to enhancing the complexation of HNAMQ with copper ions. Demonstrating a linear range for Cu2+ ions spanning from 5.0 × 10-9 to 7.5 × 10-6 M, the proposed sensor membrane showcases detection and quantification limits of 1.5 × 10-9 and 5.0 × 10-9 M, respectively. Rigorous assessments of potential interferences from other cations and anions revealed no observable disruptions in the detection of Cu2+. With no discernible HNAMQ leaching, the membrane demonstrates rapid response times and excellent durability. The sensor exhibits remarkable selectivity for Cu2+ ions and can be regenerated through exposure to 0.05 M EDTA. Successful application of the sensor in determining the presence of Cu2+ in biological (blood, liver and meat), soil, food (coffee, black tea, sour cherry juice, black currant, and milk powder) and environmental water samples underscores its efficacy.
Collapse
Affiliation(s)
- E R Darwish
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - A O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - A O S Bahathiq
- Department of Physiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - A S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt.
| | - M A El-Attar
- High Institute of Engineering & Technology, 31739, Tanta, Egypt
| |
Collapse
|
2
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Kang M, Oderinde O, Han X, Fu G, Zhang Z. Development of oxidized hydroxyethyl cellulose-based hydrogel enabling unique mechanical, transparent and photochromic properties for contact lenses. Int J Biol Macromol 2021; 183:1162-1173. [PMID: 33971231 DOI: 10.1016/j.ijbiomac.2021.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023]
Abstract
With the development of smart devices, higher requirements are put forward for the stimuli-responsive materials. Stimuli-hydrogels as one kind of stimuli-responsive materials with hydrophilicity, demonstrate huge potential in developing intelligent devices for biomedical application. On this basis, we herein report that a sample method was devised to develop a novel composite hydrogel mainly based on oxidized hydroxyethyl cellulose and allyl co-polymer. Subsequently, a series of tests toward this oxidized hydroxyethyl cellulose-based hydrogel due to its structure and performance was applied. Here, the oxidized hydroxyethyl cellulose molecular chains were used as biomacromolecule templates to form Schiff base, borate and hydrogen bonds to obtain unique mechanical properties (fast recovery with almost no-hysteresis and remarkable compressive capacity), while a double bond functionalized spirooxazine (allyl spirooxazine derivative) was applied to endow photo- and pH sensitivity to the oxidized hydroxyethyl cellulose-based transparent hydrogel (T% = 93%) substrate. Furthermore, the oxidized hydroxyethyl cellulose-based hydrogel did exhibit good pH environment adaptability and noncytotoxicity in vitro test. Based on the advanced characteristics, the designed oxidized hydroxyethyl cellulose-based hydrogel has potential applications prospect in the development of safe, fashionable and pH- detectable contact lenses, thereby providing a new strategy for the development of smart, stylish contact lenses.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang 453007, Henan Province, China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China
| | - Xuelian Han
- Hydron Contact Lens Co., Ltd, Danyang, Jiangsu 212331, China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China.
| |
Collapse
|
4
|
Xu X, Zhang X, Cao C, Zheng B, Deng H, Shuai Q. Cu 2+ -selective naked-eye 'off-on' fluorescent probe with multisignals: chromaticity, fluorescence, electrochemistry. LUMINESCENCE 2020; 35:1142-1150. [PMID: 32436363 DOI: 10.1002/bio.3827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
In this study, a rhodamine-acetylferrocene conjugate of RBFc was synthesized and then characterized using spectroscopy and single-crystal analysis. The chemosensor RBFc exhibited a marked colour change from colourless to pink after binding to Cu2+ ions. Importantly, under the presence of the other competing cations in aqueous solution, only Cu2+ ions caused spirolactam ring opening in rhodamine B in RBFc, resulting in an enhanced absorbance of ultraviolet light spectra and fluorescence spectra, as well as obvious shifts in cyclic voltammetry curves and differential pulsed voltammetry curves. The novel probe described in this manuscript provides an attractive approach for detecting Cu2+ in the presence of other multisignals.
Collapse
Affiliation(s)
- Xiuling Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaoli Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Cuilan Cao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bingbing Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongxia Deng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Wang C, Li J, Kang M, Huang X, Liu Y, Zhou N, Zhang Z. Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Anal Chim Acta 2020; 1141:110-119. [PMID: 33248643 DOI: 10.1016/j.aca.2020.10.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A novel heteronanostructure of nanodiamonds (NDs) and hydrogen-substituted graphdiyne (HsGDY) (denoted as HsGDY@NDs) was prepared for the impedimetric aptasensing of biomarkers such as myoglobin (Myo) and cardiac troponin I (cTnI). Basic characterizations revealed that the HsGDY@NDs were composed of nanospheres with sizes of 200-500 nm. In these nanospheres, NDs were embedded within the HsGDY network. The HsGDY@NDs nanostructure, which integrated the good chemical stability and three-dimensional porous networks of HsGDY, and the good biocompatibility and electrochemical activity of NDs, could immobilize diverse aptamer strands and recognize target biomarkers. Compared with HsGDY- and NDs-based aptasensors, the HsGDY@NDs-based aptasensors exhibited superior sensing performances for Myo and cTnI, giving low detection limits of 6.29 and 9.04 fg mL-1 for cTnI and Myo, respectively. In addition, the HsGDY@NDs-based aptasensors exhibited high selectivity, good stability, reproducibility, and acceptable applicability in real human serum. Thus, the construction of HsGDY@NDs-based aptasensor is expected to broaden the application of porous organic frameworks in the sensing field and provide a prospective approach for the early detection of disease biomarkers.
Collapse
Affiliation(s)
- Changbao Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Mengmeng Kang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Xiaoyu Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
6
|
Kaur S, Kaur I. Self‐assembly of p‐Aminothiophenol on Gold Surface: Application for Impedimetric and Potentiometric Sensing of Cobalt (II) Ions – A Comparative Study. ELECTROANAL 2019. [DOI: 10.1002/elan.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarbjeet Kaur
- Department of Chemistry, Centre for Advanced StudiesGuru Nanak Dev University Amritsar, Punjab 143005 India
| | - Inderpreet Kaur
- Department of Chemistry, Centre for Advanced StudiesGuru Nanak Dev University Amritsar, Punjab 143005 India
| |
Collapse
|
7
|
Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Mikrochim Acta 2019; 186:171. [PMID: 30756239 DOI: 10.1007/s00604-019-3248-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules, (e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents new perspectives, opportunities and current challenges. Graphical Abstract Schematic illustration of electrochemical sensor for heavy metal ion sensing based on heteroatom-doped graphene, metal-modified graphene, metal-oxide-modified graphene, organically modified graphene, polymer-modified graphene, and ternary graphene based nanocomposites.
Collapse
Affiliation(s)
- Yinxiu Zuo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Xiaofei Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China.
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| |
Collapse
|
8
|
Kaur A, Kaur S, Sharma M, Kaur I. Self-assembled monolayers of 3‑Hydroxy‑N‑(5‑mercapto‑1,3,4‑thiadiazol‑2‑yl) benzamide (HMTB): A platform for Impedimetric sensing of Co(II). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Waheed A, Mansha M, Ullah N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Mejri A, Alouani K. Bis(tetraethylthiophosphoramidoyl)methylamine as an electrochemical ligand for the simultaneous detection of iron and copper bivalent cations. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zhang T, Liu J, Wang C, Leng X, Xiao Y, Fu L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens Bioelectron 2017; 89:28-42. [DOI: 10.1016/j.bios.2016.06.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
12
|
Haghshenas S, Nezamzadeh-Ejhieh A. Clinoptilolite nanoparticles modified with dimethyl glyoxime as a sensitive modifier for a carbon paste electrode in the voltammetric determination of Ni(ii): experimental design by response surface methodology. NEW J CHEM 2017. [DOI: 10.1039/c7nj02833d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinoptilolite nanoparticles (Cn) were modified with dimethyl glyoxime (DMG) and the resulting Cn-DMG was used to construct a sensitive modified carbon paste electrode (CPE) for the voltammetric determination of Ni(ii) in aqueous media.
Collapse
Affiliation(s)
- Samira Haghshenas
- Department of Chemistry
- Shahreza Branch
- Islamic Azad University
- Shahreza
- Iran
| | | |
Collapse
|
13
|
Graphene-based materials for the electrochemical determination of hazardous ions. Anal Chim Acta 2016; 946:9-39. [DOI: 10.1016/j.aca.2016.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023]
|
14
|
Li G, Tao F, Liu Q, Wang L, Wei Z, Zhu F, Chen W, Sun H, Zhou Y. A highly selective and reversible water-soluble polymer based-colorimetric chemosensor for rapid detection of Cu2+ in pure aqueous solution. NEW J CHEM 2016. [DOI: 10.1039/c5nj03526k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel reversible colorimetric chemosensor based on polyethylene glycol has been developed to detect Cu2+ ions in pure aqueous solution.
Collapse
Affiliation(s)
- Guang Li
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Farong Tao
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Qian Liu
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Liping Wang
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Zhuang Wei
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Fen Zhu
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Wenxiu Chen
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Houyu Sun
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Yujie Zhou
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| |
Collapse
|
15
|
Zhang Z, Ji H, Zhang S, Peng D, Fu Q, Wang M, He L, Yue L. Plasma polyacrylic acid and hollow TiO2 spheres modified with rhodamine B for sensitive electrochemical sensing Cu(ii). NEW J CHEM 2016. [DOI: 10.1039/c5nj02483h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodamine B-modified nanocomposite-based electrochemical sensor was fabricated for selectively and sensitively detecting Cu(ii) in environmental fields.
Collapse
Affiliation(s)
- Zhihong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- P. R. China
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Hongfei Ji
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Shuai Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- P. R. China
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Donglai Peng
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Qixuan Fu
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Minghua Wang
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Linghao He
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Lingyu Yue
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- P. R. China
- State Laboratory of Surface and Interface Science of Henan Province Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
16
|
Tang Y, Zhang J, Tang D, Teng L, Lv J, Tang D. Click-Conjugation of Nanogold-Functionalized PAMAM Dendrimer: Toward a Novel Electrochemical Detection Platform. ELECTROANAL 2015. [DOI: 10.1002/elan.201500241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|