1
|
Riahin C, Meares A, Esemoto NN, Ptaszek M, LaScola M, Pandala N, Lavik E, Yang M, Stacey G, Hu D, Traeger JC, Orr G, Rosenzweig Z. Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20790-20801. [PMID: 35451825 PMCID: PMC9210996 DOI: 10.1021/acsami.2c02551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups. Chlorins and bacteriochlorins are ideal dopants due to their high hydrophobicity, which precludes their use as molecular probes in aqueous biological media but on the other hand prevents their leakage when doped into Pdots. Additionally, chlorins and bacteriochlorins have narrow deep red to NIR-emission bands and the wide array of synthetic modifications available for modifying their molecular structure enables tuning their emission predictably and systematically. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements show the chlorin- and bacteriochlorin-doped Pdots to be nearly spherical with an average diameter of 46 ± 12 nm. Efficient energy transfer between PFBT and the doped chlorins or bacteriochlorins decreases the PFBT donor emission to near baseline level and increases the emission of the doped dyes that serve as acceptors. The chlorin- and bacteriochlorin-doped Pdots show narrow emission bands ranging from 640 to 820 nm depending on the doped dye. The paper demonstrates the utility of the systematic chlorin and bacteriochlorin synthesis approach by preparing Pdots of varying emission peak wavelength, utilizing them to visualize multiple targets using wide-field fluorescence microscopy, binding them to secondary antibodies, and determining the binding of secondary antibody-conjugated Pdots to primary antibody-labeled receptors in plant cells. Additionally, the chlorin- and bacteriochlorin-doped Pdots show a blinking behavior that could enable their use in super-resolution imaging methods like STORM.
Collapse
Affiliation(s)
- Connor Riahin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Nopondo N Esemoto
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Michael LaScola
- Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Narendra Pandala
- Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Erin Lavik
- Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mengran Yang
- Division of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jeremiah C Traeger
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
2
|
Jiang XL, Damunupola D, Bruckner C. Meso-tetra(dioxanyl)porphyrins: Neutral, low molecular weight, and chiral porphyrins with solubility in aqueous solutions. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150070x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis of the low-molecular weight, meso-tetra(dioxan-2-yl)porphyrin with considerable solubility in aqueous solution is described. The key intermediate dioxan-2-carbaldehyde is accessible in either racemic or in stereo-pure forms from commercially available starting materials in three steps. Using 4 × 1 or 2 + 2-type syntheses provide the porphyrin in modest yields. While the racemic aldehyde created an intractable mixture of diastereomers, the enantiopure aldehyde created a single enantiomer of the target porphyrin. The porphyrin was spectroscopically characterized. As its free base or zinc complex, it showed excellent solubility properties in organic and aqueous solvents, though free water-solubility was not achieved. The work expands on the availability of chiral porphyrins and neutral porphyrins with considerable solubility in aqueous solution.
Collapse
Affiliation(s)
- Xu-Liang Jiang
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd., Storrs, CT 06269-3060, USA
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dinusha Damunupola
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd., Storrs, CT 06269-3060, USA
| | - Christian Bruckner
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd., Storrs, CT 06269-3060, USA
| |
Collapse
|
3
|
Cheng MHY, Cevallos A, Rajora MA, Zheng G. Fast, facile, base-free microwave-assisted metallation of bacteriochlorophylls and corresponding high yield synthesis of TOOKAD. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Naturally-derived metallo-bacteriochlorophylls have attracted much attention since their clinical approval for cancer photodynamic therapy. Their therapeutic properties are rooted in the metal complexation of bacteriochlorophylls, which endows them with optical properties favourable for biophotonic and biomedical applications, including near-infrared light-activated reactive oxygen species generation at therapeutic levels. Despite these advantages, the utility of these chromophores has been limited by synthetic challenges associated with bacteriochlorophyll metallation; specifically, a slow reaction rate and necessity of complex purification procedures remain barriers towards metalated bacteriochlorophyll synthesis. Here, these limitations are overcome through the development of a new fast, facile, efficient, base-free microwave heating metallation method for the synthesis of a series of metallo (Pd, Cu, Zn, Cd, Sn, In, Mn, Co) bacteriopyropheophorbides. The preparation and structural and optical spectral characterization of these complexes are presented. This microwave-enabled synthetic method is then applied to generate the clinical photosensitizer agent Pd-bacteriopheophorbide (TOOKAD) effectively and efficiently, followed by validation of its metallation-enhanced ROS generation.
Collapse
Affiliation(s)
- Miffy. H. Y. Cheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Alberto Cevallos
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Maneesha A. Rajora
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| |
Collapse
|
4
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Guberman-Pfeffer MJ, Lalisse RF, Hewage N, Brückner C, Gascón JA. Origins of the Electronic Modulations of Bacterio- and Isobacteriodilactone Regioisomers. J Phys Chem A 2019; 123:7470-7485. [PMID: 31361130 DOI: 10.1021/acs.jpca.9b05656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in the utilization of porphyrinoids for photomedicine, catalysis, and artificial photosynthesis require a fundamental understanding of the relationships between their molecular connectivity and resulting electronic structures. Herein, we analyze how the replacement of two pyrrolic Cβ═Cβ bonds of a porphyrin by two lactone (O═C-O) moieties modulates the ground-state thermodynamic stability and electronic structure of the resulting five possible pyrrole-modified porphyrin isomers. We made these determinations based on density functional theory (DFT) and time-dependent DFT computations of the optical spectra of all regioisomers. We also analyzed the computed magnetically induced currents of their aromatic π-systems. All regioisomers adopt the tautomeric state that maximizes aromaticity, whether or not transannular steric strains are incurred. In all isomers, the O═Cβ-Oβ bonds were found to support a macrocycle diatropic ring current. We attributed this to the delocalization of nonbonding electrons from the ring oxa- and oxo-atoms into the macrocycle. As a consequence of this delocalization, the dilactone regioisomers are as-or even more-aromatic than their hydroporphyrin congeners. The electronic structures follow different trends for the bacteriochlorin- and isobacteriochlorin-type isomers. The presence of either oxo- or oxa-oxygens conjugated with the macrocyclic π-system was found to be the minimal structural requirement for the regioisomers to exhibit distinct electronic properties. Our computational methods and mechanistic insights provide a basis for the systematic exploration of the physicochemical properties of porphyrinoids as a function of the number, relative orientation, and degree of macrocycle-π-conjugation of β-substituents, in general, and for dilactone-based porphyrinic chromophores, in particular.
Collapse
Affiliation(s)
- Matthew J Guberman-Pfeffer
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - Remy F Lalisse
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - Nisansala Hewage
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - Christian Brückner
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| | - José A Gascón
- Department of Chemistry , University of Connecticut , Unit 3060 , Storrs , Connecticut 06269-3060 , United States
| |
Collapse
|
6
|
Jiang J, Matula AJ, Swierk JR, Romano N, Wu Y, Batista VS, Crabtree RH, Lindsey JS, Wang H, Brudvig GW. Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to CO. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbing Jiang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Adam J. Matula
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - John R. Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Neyen Romano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
7
|
Luciano M, Brückner C. Modifications of Porphyrins and Hydroporphyrins for Their Solubilization in Aqueous Media. Molecules 2017; 22:E980. [PMID: 28608838 PMCID: PMC6152633 DOI: 10.3390/molecules22060980] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022] Open
Abstract
The increasing popularity of porphyrins and hydroporphyrins for use in a variety of biomedical (photodynamic therapy, fluorescence tagging and imaging, photoacoustic imaging) and technical (chemosensing, catalysis, light harvesting) applications is also associated with the growing number of methodologies that enable their solubilization in aqueous media. Natively, the vast majority of synthetic porphyrinic compounds are not water-soluble. Moreover, any water-solubility imposes several restrictions on the synthetic chemist on when to install solubilizing groups in the synthetic sequence, and how to isolate and purify these compounds. This review summarizes the chemical modifications to render synthetic porphyrins water-soluble, with a focus on the work disclosed since 2000. Where available, practical data such as solubility, indicators for the degree of aggregation, and special notes for the practitioner are listed. We hope that this review will guide synthetic chemists through the many strategies known to make porphyrins and hydroporphyrins water soluble.
Collapse
Affiliation(s)
- Michael Luciano
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
8
|
Dondi R, Yaghini E, Tewari KM, Wang L, Giuntini F, Loizidou M, MacRobert AJ, Eggleston IM. Flexible synthesis of cationic peptide-porphyrin derivatives for light-triggered drug delivery and photodynamic therapy. Org Biomol Chem 2016; 14:11488-11501. [PMID: 27886311 PMCID: PMC5166568 DOI: 10.1039/c6ob02135b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
Efficient syntheses of cell-penetrating peptide-porphyrin conjugates are described using a variety of bioconjugation chemistries. This provides a flexible means to convert essentially hydrophobic tetrapyrolle photosensitisers into amphiphilic derivatives which are well-suited for use in light-triggered drug delivery by photochemical internalisation (PCI) and targeted photodynamic therapy (PDT).
Collapse
Affiliation(s)
- R Dondi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - E Yaghini
- UCL Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - K M Tewari
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - L Wang
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - F Giuntini
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - M Loizidou
- UCL Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - A J MacRobert
- UCL Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - I M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
9
|
Zhang N, Jiang J, Liu M, Taniguchi M, Mandal AK, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins. NEW J CHEM 2016; 40:7750-7767. [PMID: 28133433 DOI: 10.1039/c6nj01155a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic bacteriochlorins absorb in the near-infrared (NIR) region and are versatile analogues of natural bacteriochlorophylls. The utilization of these chromophores in energy sciences and photomedicine requires the ability to tailor their physicochemical properties, including the incorporation of units to impart water solubility. Herein, we report the synthesis, from two common bacteriochlorin building blocks, of five wavelength-tunable, bioconjugatable and water-soluble bacteriochlorins along with two non-bioconjugatable benchmarks. Each bacteriochlorin bears short polyethylene glycol (PEG) units as the water-solubilizing motif. The PEG groups are located at the 3,5-positions of aryl groups at the pyrrolic β-positions to suppress aggregation in aqueous media. A handle containing a single carboxylic acid is incorporated to allow bioconjugation. The seven water-soluble bacteriochlorins in water display Qy absorption into the NIR range (679-819 nm), sharp emission (21-36 nm full-width-at-half-maximum) and modest fluorescence quantum yield (0.017-0.13). Each bacteriochlorin is neutral (non-ionic) yet soluble in organic (e.g., CH2Cl2, DMF) and aqueous solutions. Water solubility was assessed using absorption spectroscopy by changing the concentration ∼1000-fold (190-690 µM to 0.19-0.69 µM) with a reciprocal change in pathlength (0.1-10 cm). All bacteriochlorins showed excellent solubility in water, except for a bacteriochlorin-imide that gave slight aggregation at higher concentrations. One bacteriochlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The antibody conjugate of B2-NHS displayed a sharp signal upon ultraviolet laser excitation (355 nm) with NIR emission measured with a 730/45 nm bandpass filter. Overall, the study gives access to a set of water-soluble bacteriochlorins with desirable photophysical properties for use in multiple fields.
Collapse
Affiliation(s)
- Nuonuo Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Amit Kumar Mandal
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | | | | | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| |
Collapse
|
10
|
Liu M, Chen CY, Mandal AK, Chandrashaker V, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Red-Emitting Chlorins. NEW J CHEM 2016; 40:7721-7740. [PMID: 28154477 DOI: 10.1039/c6nj01154c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromophores that absorb and emit in the red spectral region (600-700 nm), are water soluble, and bear a bioconjugatable tether are relatively rare yet would fulfill many applications in photochemistry and photomedicine. Here, three molecular designs have been developed wherein stable synthetic chlorins - analogues of chlorophylls - have been tailored with PEG groups for use in aqueous solution. The designs differ with regard to order of the installation (pre/post-formation of the chlorin macrocycle) and position of the PEG groups. Six PEGylated synthetic chlorins (three free bases, three zinc chelates) have been prepared, of which four are equipped with a bioconjugatable (carboxylic acid) tether. The most effective design for aqueous solubilization entails facial encumbrance where PEG groups project above and below the plane of the hydrophobic disk-like chlorin macrocycle. The chlorins possess strong absorption at ~400 nm (B band) and in the red region (Qy band); regardless of wavelength of excitation, emission occurs in the red region. Excitation in the ~400 nm region thus provides an effective Stokes shift of >200 nm. The four bioconjugatable water-soluble chlorins exhibit Qy absorption/emission in water at 613/614, 636/638, 698/700 and 706/710 nm. The spectral properties are essentially unchanged in DMF and water for the facially encumbered chlorins, which also exhibit narrow Qy absorption and emission bands (full-width-at-half maximum of each <25 nm). The water-solubility was assessed by absorption spectroscopy over the concentration range ~0.4 μM - 0.4 mM. One chlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The conjugate displayed a sharp signal when excited by a violet laser (405 nm) with emission in the 620-660 nm range. Taken together, the designs described herein augur well for development of a set of spectrally distinct chlorins with relatively sharp bands in the red region.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Amit Kumar Mandal
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | | | | | | | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| |
Collapse
|
11
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|