1
|
Lv L, Hu J, Chen Q, Xu M, Jing C, Wang X. A switchable electrochemical hairpin-aptasensor for ochratoxin A detection based on the double signal amplification effect of gold nanospheres. NEW J CHEM 2022. [DOI: 10.1039/d1nj05729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OTA electrochemical sensor based on h-DNA and the double effect of gold nanospheres that can be applied for actual sample detection.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juanjuan Hu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qingqing Chen
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingming Xu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunyang Jing
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Zhang B, Liu W, Liu Z, Fu X, Du D. Establishment of a Chemiluminescence Immunoassay Combined with Immunomagnetic Beads for Rapid Analysis Of Ochratoxin A. J AOAC Int 2021; 105:346-351. [PMID: 34599815 DOI: 10.1093/jaoacint/qsab104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Ochratoxins A (OTA), as the harmful mycotoxins, are toxic secondary metabolite produced by several species of Aspergillus and Penicillium. Hence, it is of vital important to establish a sensitive method to detect OTA in various grains. OBJECTIVE Herein a novel highly sensitive chemiluminescence immunoassay was developed to determination of ochratoxin A in wheat, corn, and poultry feed. METHODS The immunomagnetic beads were used as solid phase carrier and separator in the competitive chemiluminescence method, the monoclonal antibodies anti-OTA coated on immunomagnetic beads were applied as the capturing antibody, in which OTA would compete with Ochratoxin A-alkaline phosphatase (OTA-ALP) in binding with OTA antibodies. RESULTS The proposed method exhibited good linearity (R2 ≥ 0.999), adequate OTA recovery rate (83.60% to 102.50%), and good repeatability. The sensitivity of the proposed method was 2.05 pg/mL. In addition, the method was highly selective, it did not have cross-reaction with other mycotoxin (e.g., AFB1, DON, ZEN). Furthermore, the developed method was applied in the analysis of wheat, corn and two animal feeds successfully, the results obtained by the chemiluminescence method showed the high correlation with those obtained by HPLC method (correlation coefficient 0.9958) when testing each extract by both methods. CONCLUSIONS This strategy shows great potential application for other toxic and harmful mycotoxin detection. HIGHLIGHTS A novel highly rapid and sensitive chemiluminescence immunoassay was established to quantitation for ochratoxin A.
Collapse
Affiliation(s)
- Bo Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.,Kangyuan Techbio Biological Technology Co., Ltd, Suqian, 223600, China
| | - Wenting Liu
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhenjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoling Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Chen X, Wu H, Tang X, Zhang Z, Li P. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. ELECTROANAL 2021. [DOI: 10.1002/elan.202100223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| |
Collapse
|
4
|
Wang Y, Song W, Zhao H, Ma X, Yang S, Qiao X, Sheng Q, Yue T. DNA walker-assisted aptasensor for highly sensitive determination of Ochratoxin A. Biosens Bioelectron 2021; 182:113171. [PMID: 33773380 DOI: 10.1016/j.bios.2021.113171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Ochratoxin A (OTA), a toxic secondary metabolite produced via various fungus, poses a serious threat to the health of human beings and animals. In this paper, an aptasensor for OTA detection based on gold nanoparticles decorated molybdenum oxide (AuNPs-MoOx) nanocomposites, hybridization chain reaction (HCR) and a restriction endonuclease (Nb.BbvCI)-aided walker DNA machine was successfully constructed. In this electrochemical platform, the HCR was also used to embed more electrical signal molecules of methylene blue (MB) on silver nanoparticles (AgNPs) to achieve signal amplification. Under the optimum conditions, after adding OTA and Nb.BbvCI in turn and responding adequately under appropriate conditions, aptamer-DNA (6-DNA) carries the OTA away from the electrode surface, and walker DNA was hybridized autonomously with 5-DNA, releasing a large amount of 5'-DNA with the help of Nb.BBVCI. Finally, the electrochemical signal obtained by differential pulse voltammetry (DPV) was weakened. As an artificial and popular signal amplification technique, the DNA walking machine greatly improved the sensitivity. The proposed biosensor exhibited excellent analytical performance in the range of 0.01-10000 pg mL-1 with a detection limit as low as 3.3 fg mL-1. Furthermore, direct comparison with ultraperformance liquid chromatography (UPLC) indicates excellent agreement to actual samples such as apple juice, orange juice, red wine and serum.
Collapse
Affiliation(s)
- Yahui Wang
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Haiyan Zhao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xin Ma
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Shuying Yang
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Xiujuan Qiao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China; College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
5
|
|
6
|
Rizwan M, Mohd-Naim NF, Ahmed MU. Trends and Advances in Electrochemiluminescence Nanobiosensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E166. [PMID: 29315277 PMCID: PMC5795924 DOI: 10.3390/s18010166] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
The rapid and increasing use of the nanomaterials (NMs), nanostructured materials (NSMs), metal nanoclusters (MNCs) or nanocomposites (NCs) in the development of electrochemiluminescence (ECL) nanobiosensors is a significant area of study for its massive potential in the practical application of nanobiosensor fabrication. Recently, NMs or NSMs (such as AuNPs, AgNPs, Fe₃O₄, CdS QDs, OMCs, graphene, CNTs and fullerenes) or MNCs (such as Au, Ag, and Pt) or NCs of both metallic and non-metallic origin are being employed for various purposes in the construction of biosensors. In this review, we have selected recently published articles (from 2014-2017) on the current development and prospects of label-free or direct ECL nanobiosensors that incorporate NCs, NMs, NSMs or MNCs.
Collapse
Affiliation(s)
- Mohammad Rizwan
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| | - Noor Faizah Mohd-Naim
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
- Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| |
Collapse
|
7
|
Zhang Y, Wei Q. The role of nanomaterials in electroanalytical biosensors: A mini review. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 2016; 408:7035-48. [DOI: 10.1007/s00216-016-9548-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|