1
|
Wang GY, Yan DX, Rong RX, Shi BY, Lin GJ, Yin F, Wei WT, Li XL, Wang KR. Amphiphilic α-Peptoid-deoxynojirimycin Conjugate-based Multivalent Glycosidase Inhibitor for Hypoglycemic Effect and Fluorescence Imaging. J Med Chem 2024; 67:5945-5956. [PMID: 38504504 DOI: 10.1021/acs.jmedchem.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Multivalent glycosidase inhibitors based on 1-deoxynojirimycin derivatives against α-glucosidases have been rapidly developed. Nonetheless, the mechanism based on self-assembled multivalent glucosidase inhibitors in living systems needs to be further studied. It remains to be determined whether the self-assembly possesses sufficient stability to endure transit through the small intestine and subsequently bind to the glycosidases located therein. In this paper, two amphiphilic compounds, 1-deoxynojirimycin and α-peptoid conjugates (LP-4DNJ-3C and LP-4DNJ-6C), were designed. Their self-assembling behaviors, multivalent α-glucosidase inhibition effect, and fluorescence imaging on living organs were studied. LP-4DNJ-6C exhibited better multivalent α-glucosidase inhibition activities in vitro. Moreover, the self-assembly of LP-4DNJ-6C could effectively form a complex with Nile red. The complex showed fluorescence quenching effect upon binding with α-glucosidases and exhibited potent fluorescence imaging in the small intestine. This result suggests that a multivalent hypoglycemic effect achieved through self-assembly in the intestine is a viable approach, enabling the rational design of multivalent hypoglycemic drugs.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
- College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan Key Laboratory of Organic Small Molecule Materials, Handan University, Handan 056005, P. R. China
| | - Dong-Xiao Yan
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Bing-Ye Shi
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, P. R. China
| | - Gao-Juan Lin
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Fangqian Yin
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
- College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan Key Laboratory of Organic Small Molecule Materials, Handan University, Handan 056005, P. R. China
| | - Wen-Tong Wei
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Xiao-Liu Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
2
|
Liang Y, Schettini R, Kern N, Manciocchi L, Izzo I, Spichty M, Bodlenner A, Compain P. Deconstructing Best-in-Class Neoglycoclusters as a Tool for Dissecting Key Multivalent Processes in Glycosidase Inhibition. Chemistry 2024; 30:e202304126. [PMID: 38221894 DOI: 10.1002/chem.202304126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man). Here, we report a structure-activity relationship (SAR) study based on the top-down deconstruction of best-in-class multivalent inhibitors. This approach provides a valuable tool to understand the complex interdependent mechanisms underpinning the inhibitory multivalent effect. Combining SAR experiments, binding stoichiometry assessments, thermodynamic modelling and atomistic simulations allowed us to establish the significant contribution of statistical rebinding mechanisms and the importance of several key parameters, including inhitope accessibility, topological restrictions, and electrostatic interactions. Our findings indicate that strong chelate-binding, resulting from the formation of a cross-linked complex between a multivalent inhibitor and two dimeric JBα-man molecules, is not a sufficient condition to reach high levels of affinity enhancements. The deconstruction approach thus offers unique opportunities to better understand multivalent binding and provides important guidelines for the design of potent and selective multiheaded inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Rosaria Schettini
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di, Salerno, 84084, Fisciano (Salerno), Italy
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Luca Manciocchi
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042)-IRJBD, 3 bis rue Alfred Werner, 68057, Mulhouse Cedex, France
| | - Irene Izzo
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di, Salerno, 84084, Fisciano (Salerno), Italy
| | - Martin Spichty
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042)-IRJBD, 3 bis rue Alfred Werner, 68057, Mulhouse Cedex, France
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| |
Collapse
|
3
|
Buco F, Matassini C, Vanni C, Clemente F, Paoli P, Carozzini C, Beni A, Cardona F, Goti A, Moya SE, Ortore MG, Andreozzi P, Morrone A, Marradi M. Gold nanoparticles decorated with monosaccharides and sulfated ligands as potential modulators of the lysosomal enzyme N-acetylgalactosamine-6-sulfatase (GALNS). Org Biomol Chem 2023; 21:9362-9371. [PMID: 37975191 DOI: 10.1039/d3ob01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the β-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, β-D-galactosides/sulfated ligands do not show better inhibition than the β-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with β-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.
Collapse
Affiliation(s)
- Francesca Buco
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Camilla Matassini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Costanza Vanni
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Francesca Clemente
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Cosimo Carozzini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Alice Beni
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Francesca Cardona
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Andrea Goti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Sergio Enrique Moya
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia-San Sebastián 20014, Spain
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, I-60130, Italy
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Meyer Children's Hospital, IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
4
|
Tran ML, Borie-Guichot M, Garcia V, Oukhrib A, Génisson Y, Levade T, Ballereau S, Turrin CO, Dehoux C. Phosphorus Dendrimers for Metal-Free Ligation: Design of Multivalent Pharmacological Chaperones against Gaucher Disease. Chemistry 2023; 29:e202301210. [PMID: 37313991 DOI: 10.1002/chem.202301210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes β-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best β-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase β-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.
Collapse
Affiliation(s)
- My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | | | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse CEDEX 4, France
- LCC-CNRS, Université de Toulouse, CNRS, 31013, Toulouse CEDEX 6, France
- IMD-Pharma, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
5
|
Zhan F, Zhu J, Xie S, Xu J, Xu S. Advances of bioorthogonal coupling reactions in drug development. Eur J Med Chem 2023; 253:115338. [PMID: 37037138 DOI: 10.1016/j.ejmech.2023.115338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Currently, bioorthogonal coupling reactions have garnered considerable interest due to their high substrate selectivity and less restrictive reaction conditions. During recent decades, bioorthogonal coupling reactions have emerged as powerful tools in drug development. This review describes the current applications of bioorthogonal coupling reactions in compound library building mediated by the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and in situ click chemistry or conjunction with other techniques; druggability optimization with 1,2,3-triazole groups; and intracellular self-assembly platforms with ring tension reactions, which are presented from the viewpoint of drug development. There is a reasonable prospect that bioorthogonal coupling reactions will accelerate the screening of lead compounds, the designing strategies of small molecules and expand the variety of designed compounds, which will be a new trend in drug development in the future.
Collapse
|
6
|
Wang GY, Wei WT, Rong RX, Su SS, Yan DX, Yin FQ, Li XL, Wang KR. Fluorescence sensing and glycosidase inhibition effect of multivalent glycosidase inhibitors based on Naphthalimide-deoxynojirimycin conjugates. Bioorg Chem 2023; 132:106373. [PMID: 36681043 DOI: 10.1016/j.bioorg.2023.106373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Synthetic glycoconjugates as chemical probes have been widely developed for the detection of glycosidase enzymes. However, the binding interactions between iminosugar derivatives and glycosidases were limited, especially for the binding interactions between multivalent glycosidase inhibitors and α-glycosidases. In this paper, three naphthalimide-DNJ conjugates were synthesized. Furthermore, the binding interactions and glycosidase inhibition effects of them were investigated. It was found that the strong binding interactions of multivalent glycosidase inhibitors with enzymes were related to the efficient inhibitory activity against glycosidase. Moreover, the lengths of the chain between DNJ moieties and the triazole ring for the naphthalimide-DNJ conjugates influenced the self-assembly properties, binding interactions and glycosidase inhibition activities with multisource glycosidases. Compound 13 with six carbons between the DNJ moiety and triazole ring showed the stronger binding interactions and better glycosidase inhibition activities against α-mannosidase (jack bean) and α-glucosidase (aspergillus niger). In addition, compound 13 showed an effective PBG inhibition effect in mice with 51.18 % decrease in blood glucose at 30 min. This result opens a way for detection of multivalent glycosidase inhibition effect by a fluorescent sensing method.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan 056005, PR China
| | - Wen-Tong Wei
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China
| | - Rui-Xue Rong
- Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; Department of Immunology, Medical Comprehensive Experimental Center, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Shan-Shan Su
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China
| | - Dong-Xiao Yan
- Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; Department of Immunology, Medical Comprehensive Experimental Center, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Fang-Qian Yin
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China; College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan 056005, PR China
| | - Xiao-Liu Li
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China.
| | - Ke-Rang Wang
- College of chemistry and environmental science, Hebei University, Baoding 071002, PR China; Key laboratory of medicinal chemistry and molecular diagnosis (Ministry of education), Key laboratory of chemical biology of Hebei province, Baoding 071002, PR China.
| |
Collapse
|
7
|
Clemente F, Davighi MG, Matassini C, Cardona F, Goti A, Morrone A, Paoli P, Tejero T, Merino P, Cacciarini M. Light-Triggered Control of Glucocerebrosidase Inhibitors: Towards Photoswitchable Pharmacological Chaperones. Chemistry 2023; 29:e202203841. [PMID: 36598148 DOI: 10.1002/chem.202203841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Piperidine-based photoswitchable derivatives have been developed as putative pharmacological chaperones for glucocerebrosidase (GCase), the defective enzyme in Gaucher disease (GD). The structure-activity study revealed that both the iminosugar and the light-sensitive azobenzene are essential features to exert inhibitory activity towards human GCase and a system with the correct inhibition trend (IC50 of the light-activated form lower than IC50 of the dark form) was identified. Kinetic analyses showed that all compounds are non-competitive inhibitors (mixed or pure) of GCase and the enzyme allosteric site involved in the interaction was identified by means of MD simulations. A moderate activity enhancement of mutant GCase assessed in GD patients' fibroblasts (ex vivo experiments) carrying the most common mutation was recorded. This promising observation paves the way for further studies to improve the benefit of the light-to-dark thermal conversion for chaperoning activity.
Collapse
Affiliation(s)
- Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy
| | - Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy.,Associated with LENS, Via N. Carrara 1, 50019, Sesto F.no, FI, Italy
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy.,Associated with LENS, Via N. Carrara 1, 50019, Sesto F.no, FI, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Firenze, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Tomás Tejero
- Institute of Chemical Synthesis and Homogeneous Catalysis. (ISQCH), University of Zaragoza, Campus San Francisco, Zaragoza, 50009, Spain
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Campus San Francisco, Zaragoza, 50009, Spain
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy.,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
8
|
Bambus[4,6]urils as Dual Scaffolds for Multivalent Iminosugar Presentation and Ion Transport: Access to Unprecedented Glycosidase-Directed Anion Caging Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154772. [PMID: 35897947 PMCID: PMC9330389 DOI: 10.3390/molecules27154772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology.
Collapse
|
9
|
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15070823. [PMID: 35890122 PMCID: PMC9325019 DOI: 10.3390/ph15070823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Collapse
|
10
|
Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorg Chem 2022; 120:105650. [DOI: 10.1016/j.bioorg.2022.105650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023]
|
11
|
Hybrid Multivalent Jack Bean α-Mannosidase Inhibitors: The First Example of Gold Nanoparticles Decorated with Deoxynojirimycin Inhitopes. Molecules 2021; 26:molecules26195864. [PMID: 34641408 PMCID: PMC8512634 DOI: 10.3390/molecules26195864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple monosaccharides (β-d-gluco- or α-d-mannosides). The display of DNJ at the gold surface has been modulated (i) by using an amphiphilic linker longer than the aliphatic chain used for the monosaccharides and (ii) by presenting the inhitope, not only in monomeric form, but also in a trimeric fashion through combination of a dendron approach with glyconanotechnology. The latter strategy resulted in a strong enhancement of the inhibitory activity towards JBα-man, with a Ki in the nanomolar range (Ki = 84 nM), i.e., more than three orders of magnitude higher than the monovalent reference compound.
Collapse
|
12
|
Abstract
Iminosugars are naturally occurring carbohydrate analogues known since 1967. These natural compounds and hundreds of their synthetic derivatives prepared over five decades have been mainly exploited to inhibit the glycosidases, the enzymes catalysing the glycosidic bond cleavage, in order to find new drugs for the treatment of type 2 diabetes and other diseases. However, iminosugars are also inhibitors of glycosyltransferases, the enzymes responsible for the synthesis of oligosaccharides and glycoconjugates. The selective inhibition of specific glycosyltransferases involved in cancer or bacterial infections could lead to innovative therapeutic agents. The synthesis and biological properties of all the iminosugars assayed to date as glycosyltransferase inhibitors are reviewed in the present article.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| |
Collapse
|
13
|
Della Sala P, Vanni C, Talotta C, Di Marino L, Matassini C, Goti A, Neri P, Šesták S, Cardona F, Gaeta C. Multivalent resorcinarene clusters decorated with DAB-1 inhitopes: targeting Golgi α-mannosidase from Drosophila melanogaster. Org Chem Front 2021. [DOI: 10.1039/d1qo01048d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Resorcinarene@DAB-1 clusters show a remarkable multivalent effect towards GMIIb over other α-mannosidases, due to a rebinding mechanism: two DAB-1 units of the cluster bind the two Zn-sites of the dimeric protein in an alternate way.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Costanza Vanni
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Luca Di Marino
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovakia
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| |
Collapse
|
14
|
Synthesis and Glycosidase Inhibition Properties of Calix[8]arene-Based Iminosugar Click Clusters. Pharmaceuticals (Basel) 2020; 13:ph13110366. [PMID: 33167387 PMCID: PMC7694328 DOI: 10.3390/ph13110366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
A set of 6- to 24-valent clusters was constructed with terminal deoxynojirimycin (DNJ) inhibitory heads through C6 or C9 linkers by way of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions between mono- or trivalent azido-armed iminosugars and calix[8]arene scaffolds differing in their valency and their rigidity but not in their size. The power of multivalency to upgrade the inhibition potency of the weak DNJ inhibitor (monovalent DNJ Ki being at 322 and 188 µM for C6 or C9 linkers, respectively) was evaluated on the model glycosidase Jack Bean α-mannosidase (JBα-man). Although for the clusters with the shorter C6 linker the rigidity of the scaffold was essential, these parameters had no influence for clusters with C9 chains: all of them showed rather good relative affinity enhancements per inhibitory epitopes between 70 and 160 highlighting the sound combination of the calix[8]arene core and the long alkyl arms. Preliminary docking studies were performed to get insights into the preferred binding modes.
Collapse
|
15
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
16
|
Tamburrini A, Colombo C, Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med Res Rev 2020; 40:495-531. [DOI: 10.1002/med.21625] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Tamburrini
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Cinzia Colombo
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Anna Bernardi
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| |
Collapse
|
17
|
Martínez-Bailén M, Carmona AT, Cardona F, Matassini C, Goti A, Kubo M, Kato A, Robina I, Moreno-Vargas AJ. Synthesis of multimeric pyrrolidine iminosugar inhibitors of human β-glucocerebrosidase and α-galactosidase A: First example of a multivalent enzyme activity enhancer for Fabry disease. Eur J Med Chem 2020; 192:112173. [PMID: 32146376 DOI: 10.1016/j.ejmech.2020.112173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022]
Abstract
The synthesis of a chemical library of multimeric pyrrolidine-based iminosugars by incorporation of three pairs of epimeric pyrrolidine-azides into different alkyne scaffolds via CuAAC is presented. The new multimers were evaluated as inhibitors of two important therapeutic enzymes, human α-galactosidase A (α-Gal A) and lysosomal β-glucocerebrosidase (GCase). Structure-activity relationships were established focusing on the iminosugar inhitope, the valency of the dendron and the linker between the inhitope and the central scaffold. Remarkable is the result obtained in the inhibition of α-Gal A, where one of the nonavalent compounds showed potent inhibition (0.20 μM, competitive inhibition), being a 375-fold more potent inhibitor than the monovalent reference. The potential of the best α-Gal A inhibitors to act as pharmacological chaperones was analyzed by evaluating their ability to increase the activity of this enzyme in R301G fibroblasts from patients with Fabry disease, a genetic disorder related with a reduced activity of α-Gal A. The best enzyme activity enhancement was obtained for the same nonavalent compound, which increased 5.2-fold the activity of the misfolded enzyme at 2.5 μM, what constitutes the first example of a multivalent α-Gal A activity enhancer of potential interest in the treatment of Fabry disease.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain.
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), 70125, Bari, Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), 70125, Bari, Italy
| | - Moemi Kubo
- Department of Hospital Pharmacy, University of Toyama, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama, 930-0194, Japan
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain.
| |
Collapse
|
18
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
19
|
Zelli R, Dumy P, Marra A. Metal-free synthesis of imino-disaccharides and calix-iminosugars by photoinduced radical thiol–ene coupling (TEC). Org Biomol Chem 2020; 18:2392-2397. [DOI: 10.1039/d0ob00198h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deprotected iminosugar alkenes were subjected to thiol–ene coupling with deprotected sugar thiols to afford new imino-disaccharides. Two thiol–ene couplings converted these alkenes into iminosugar thiols and then multivalent iminosugars.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
20
|
González-Cuesta M, Goyard D, Nanba E, Higaki K, García Fernández JM, Renaudet O, Ortiz Mellet C. Multivalent glycoligands with lectin/enzyme dual specificity: self-deliverable glycosidase regulators. Chem Commun (Camb) 2019; 55:12845-12848. [PMID: 31596280 DOI: 10.1039/c9cc06376e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multivalent mannosides with inherent macrophage recognition abilities, built on β-cyclodextrin, RAFT cyclopeptide or peptide dendrimer cores, trigger selective inhibition of lysosomal β-glucocerebrosidase or α-mannosidase depending on valency and topology, offering new opportunities in multitargeted drug design.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| | - David Goyard
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 3800 Grenoble, France.
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain.
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 3800 Grenoble, France. and Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|
21
|
Martínez-Bailén M, Galbis E, Carmona AT, de-Paz MV, Robina I. Preparation of water-soluble glycopolymers derived from five-membered iminosugars. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Matassini C, D'Adamio G, Vanni C, Goti A, Cardona F. Studies for the Multimerization of DAB-1-Based Iminosugars through Iteration of the Nitrone Cycloaddition/Ring-Opening/Allylation Sequence. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Camilla Matassini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Giampiero D'Adamio
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Costanza Vanni
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- Associated with Consorzio Interuniversitatio Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS); Università di Bari; 70125 Bari Italy
| | - Francesca Cardona
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- Associated with Consorzio Interuniversitatio Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS); Università di Bari; 70125 Bari Italy
- Associated with LENS; via N. Carrara 1 50019 Sesto Fiorentino, FI Italy
| |
Collapse
|
23
|
Compain P. Multivalent Effect in Glycosidase Inhibition: The End of the Beginning. CHEM REC 2019; 20:10-22. [PMID: 30993894 DOI: 10.1002/tcr.201900004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Indexed: 12/21/2022]
Abstract
Glycosidases are ubiquitous enzymes involved in a diversity of key biological processes such as energy uptake or cell wall degradation. The design of specific glycosidase inhibitors has been therefore the subject of intense research efforts in academia and pharmaceutical industry. However, until recently, the study of the impact of multivalency on glycosidase inhibition was almost completely neglected. The following account will review our ten year journey on the design of multivalent glycomimetics within our research group, from the discovery of the first strong multivalent effect in glycosidase inhibition to the high-resolution crystal structures of Jack bean α-mannosidase in complex with the multimeric inhibitor displaying the largest binding enhancements reported so far.
Collapse
Affiliation(s)
- Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
24
|
Ferhati X, Matassini C, Fabbrini MG, Goti A, Morrone A, Cardona F, Moreno-Vargas AJ, Paoli P. Dual targeting of PTP1B and glucosidases with new bifunctional iminosugar inhibitors to address type 2 diabetes. Bioorg Chem 2019; 87:534-549. [PMID: 30928876 DOI: 10.1016/j.bioorg.2019.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
The diffusion of type 2 diabetes (T2D) throughout the world represents one of the most important health problems of this century. Patients suffering from this disease can currently be treated with numerous oral anti-hyperglycaemic drugs, but none is capable of reproducing the physiological action of insulin and, in several cases, they induce severe side effects. Developing new anti-diabetic drugs remains one of the most urgent challenges of the pharmaceutical industry. Multi-target drugs could offer new therapeutic opportunities for the treatment of T2D, and the reported data on type 2 diabetic mice models indicate that these drugs could be more effective and have fewer side effects than mono-target drugs. α-Glucosidases and Protein Tyrosine Phosphatase 1B (PTP1B) are considered important targets for the treatment of T2D: the first digest oligo- and disaccharides in the gut, while the latter regulates the insulin-signaling pathway. With the aim of generating new drugs able to target both enzymes, we synthesized a series of bifunctional compounds bearing both a nitro aromatic group and an iminosugar moiety. The results of tests carried out both in vitro and in a cell-based model, show that these bifunctional compounds maintain activity on both target enzymes and, more importantly, show a good insulin-mimetic activity, increasing phosphorylation levels of Akt in the absence of insulin stimulation. These compounds could be used to develop a new generation of anti-hyperglycemic drugs useful for the treatment of patients affected by T2D.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy
| | - Camilla Matassini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy
| | - Maria Giulia Fabbrini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy
| | - Andrea Goti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy; Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy; Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), Italy.
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, n/Prof. García González 1, E-41012 Sevilla, Spain
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
25
|
Pichon MM, Stauffert F, Bodlenner A, Compain P. Tight-binding inhibition of jack bean α-mannosidase by glycoimidazole clusters. Org Biomol Chem 2019; 17:5801-5817. [DOI: 10.1039/c9ob00826h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Examples of multimeric inhibitors displaying tight binding inhibition of a carbohydrate-processing enzyme are presented.
Collapse
Affiliation(s)
- Maëva M. Pichon
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)
- Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042)
- Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)
- ECPM
- 67000 Strasbourg
| | - Fabien Stauffert
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)
- Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042)
- Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)
- ECPM
- 67000 Strasbourg
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)
- Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042)
- Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)
- ECPM
- 67000 Strasbourg
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)
- Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042)
- Equipe de Synthèse Organique et Molécules Bioactives (SYBIO)
- ECPM
- 67000 Strasbourg
| |
Collapse
|
26
|
Prichard KL, O'Brien N, Ghorbani M, Wood A, Barnes E, Kato A, Houston TA, Simone MI. Synthetic Routes to 3,4,5-Trihydroxypiperidines via Stereoselective and Biocatalysed Protocols, and Strategies toN- andO-Derivatisation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kate L. Prichard
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Nicholas O'Brien
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Mahdi Ghorbani
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Adam Wood
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Evan Barnes
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Todd A. Houston
- Institute for Glycomics; Griffith University (Gold Coast); 4215 Southport QLD Australia
| | - Michela I. Simone
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| |
Collapse
|
27
|
Wood A, Prichard KL, Clarke Z, Houston TA, Fleet GWJ, Simone MI. Synthetic Pathways to 3,4,5-Trihydroxypiperidines from the Chiral Pool. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800943] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Adam Wood
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Kate L. Prichard
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Zane Clarke
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
- Department of Chemistry; Juniata College; PA16652-2196 Huntingdon Pennsylvania USA
| | - Todd A. Houston
- Institute for Glycomics; Griffith University (Gold Coast); 4215 Southport QLD Australia
| | | | - Michela I. Simone
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| |
Collapse
|
28
|
Bella M, Šesták S, Moncoľ J, Koóš M, Poláková M. Synthesis of 1,4-imino-L-lyxitols modified at C-5 and their evaluation as inhibitors of GH38 α-mannosidases. Beilstein J Org Chem 2018; 14:2156-2162. [PMID: 30202468 PMCID: PMC6122390 DOI: 10.3762/bjoc.14.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 01/01/2023] Open
Abstract
A synthetic approach to 1,4-imino-L-lyxitols with various modifications at the C-5 position is reported. These imino-L-lyxitol cores were used for the preparation of a series of N-(4-halobenzyl)polyhydroxypyrrolidines. An impact of the C-5 modification on the inhibition and selectivity against GH38 α-mannosidases from Drosophila melanogaster, the Golgi (GMIIb) and lysosomal (LManII) mannosidases and commercial jack bean α-mannosidase from Canavalia ensiformis was evaluated. The modification at C-5 affected their inhibitory activity against the target GMIIb enzyme. In contrast, no inhibition effect of the pyrrolidines against LManII was observed. The modification of the imino-L-lyxitol core is therefore a suitable motif for the design of inhibitors with desired selectivity against the target GMIIb enzyme.
Collapse
Affiliation(s)
- Maroš Bella
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Sergej Šesták
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Miroslav Koóš
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Monika Poláková
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| |
Collapse
|
29
|
Elías-Rodríguez P, Pingitore V, Carmona AT, Moreno-Vargas AJ, Ide D, Miyawaki S, Kato A, Álvarez E, Robina I. Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidine–(Thio)urea Hybrid Molecules Generated via Click Chemistry. J Org Chem 2018; 83:8863-8873. [DOI: 10.1021/acs.joc.8b01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pilar Elías-Rodríguez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Valeria Pingitore
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Ana T. Carmona
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio J. Moreno-Vargas
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Daisuke Ide
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| |
Collapse
|
30
|
Characterization of the PLP-dependent transaminase initiating azasugar biosynthesis. Biochem J 2018; 475:2241-2256. [PMID: 29907615 DOI: 10.1042/bcj20180340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022]
Abstract
Biosynthesis of the azasugar 1-deoxynojirimycin (DNJ) critically involves a transamination in the first committed step. Here, we identify the azasugar biosynthetic cluster signature in Paenibacillus polymyxa SC2 (Ppo), homologous to that reported in Bacillus amyloliquefaciens FZB42 (Bam), and report the characterization of the aminotransferase GabT1 (named from Bam). GabT1 from Ppo exhibits a specific activity of 4.9 nmol/min/mg at 30°C (pH 7.5), a somewhat promiscuous amino donor selectivity, and curvilinear steady-state kinetics that do not reflect the predicted ping-pong behavior typical of aminotransferases. Analysis of the first half reaction with l-glutamate in the absence of the acceptor fructose 6-phosphate revealed that it was capable of catalyzing multiple turnovers of glutamate. Kinetic modeling of steady-state initial velocity data was consistent with a novel hybrid branching kinetic mechanism which included dissociation of PMP after the first half reaction to generate the apoenzyme which could bind PLP for another catalytic deamination event. Based on comparative sequence analyses, we identified an uncommon His-Val dyad in the PLP-binding pocket which we hypothesized was responsible for the unusual kinetics. Restoration of the conserved PLP-binding site motif via the mutant H119F restored classic ping-pong kinetic behavior.
Collapse
|
31
|
Synthesis and glycosidase inhibition potency of all- trans substituted 1- C -perfluoroalkyl iminosugars. Carbohydr Res 2018; 464:2-7. [DOI: 10.1016/j.carres.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
|
32
|
Carmona AT, Carrión-Jiménez S, Pingitore V, Moreno-Clavijo E, Robina I, Moreno-Vargas AJ. Harnessing pyrrolidine iminosugars into dimeric structures for the rapid discovery of divalent glycosidase inhibitors. Eur J Med Chem 2018; 151:765-776. [PMID: 29674295 DOI: 10.1016/j.ejmech.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
The synthesis of three libraries (1a-l, 1a'-l' and 2a-l) of dimeric iminosugars through CuAAC reaction between three different alkynyl pyrrolidines and a set of diazides was carried out. The resulting crude dimers were screened in situ against two α-fucosidases (libraries 1a-l and 1a'-l') and one β-galactosidase (2a-l). This method is pioneer in the search of divalent glycosidase inhibitors. It has allowed the rapid identification of dimer 1i as the best inhibitor of α-fucosidases from bovine kidney (Ki = 0.15 nM) and Homo sapiens (Ki = 60 nM), and dimer 2e as the best inhibitor of β-galactosidase from bovine liver (Ki = 5.8 μM). In order to evaluate a possible divalent effect in the inhibition, the synthesis and biological analysis of the reference monomers were also performed. Divalent effect was only detected in the inhibition of bovine liver β-galactosidase by dimer 2e.
Collapse
Affiliation(s)
- Ana T Carmona
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Sebastián Carrión-Jiménez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Valeria Pingitore
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Elena Moreno-Clavijo
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Antonio J Moreno-Vargas
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain.
| |
Collapse
|
33
|
Nierengarten JF. Fullerene hexa-adduct scaffolding for the construction of giant molecules. Chem Commun (Camb) 2018; 53:11855-11868. [PMID: 29051931 DOI: 10.1039/c7cc07479d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexa-substituted fullerenes are unique scaffolds for the fast construction of globular dendrimers. Efficient synthetic methodologies based on the post-functionalization of pre-constructed fullerene hexa-adduct derivatives have been reported in recent years and dendrimers difficult or even impossible to prepare by classical fullerene chemistry are now easily accessible. Fullerodendrimers for various applications have been thus prepared. Examples include liquid crystalline materials, non-viral gene delivery systems and bioactive glycoclusters. On the other hand, fullerene hexa-adduct building blocks have been used for the ultra-fast synthesis of giant dendrimers. Indeed, the resulting dendrimers of first generation are already surrounded by 120 peripheral functional groups. This strategy has been used to prepare giant glycoclusters with anti-viral activity and multivalent glycosidase inhibitors.
Collapse
Affiliation(s)
- Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
34
|
Hottin A, Wright DW, Moreno-Clavijo E, Moreno-Vargas AJ, Davies GJ, Behr JB. Exploring the divalent effect in fucosidase inhibition with stereoisomeric pyrrolidine dimers. Org Biomol Chem 2018; 14:4718-27. [PMID: 27138139 DOI: 10.1039/c6ob00647g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multi-valent inhibitors offer promise for the enhancement of therapeutic compounds across a range of chemical and biological processes. Here, a significant increase in enzyme-inhibition potencies was observed with a dimeric iminosugar-templated fucosidase inhibitor (IC50 = 0.108 μM) when compared to its monovalent equivalent (IC50 = 2.0 μM). Such a gain in binding is often attributed to a "multivalent effect" rising from alternative recapture of the scaffolded binding epitopes. The use of control molecules such as the meso analogue (IC50 = 0.365 μM) or the enantiomer (IC50 = 569 μM), as well as structural analysis of the fucosidase-inhibitor complex, allowed a detailed analysis of the possible mechanism of action, at the molecular level. Here, the enhanced binding affinity of the dimer over the monomer can be attributed to additional interactions in non-catalytic sites as also revealed in the 3-D structure of a bacterial fucosidase inhibitor complex.
Collapse
Affiliation(s)
- Audrey Hottin
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France.
| | - Daniel W Wright
- Structural Biology Laboratory Department of Chemistry, University of York, York YO10 5DD, UK
| | - Elena Moreno-Clavijo
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain
| | - Gideon J Davies
- Structural Biology Laboratory Department of Chemistry, University of York, York YO10 5DD, UK
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France.
| |
Collapse
|
35
|
Yan L, Yin Z, Niu L, Shao J, Chen H, Li X. Synthesis of pentacyclic iminosugars with constrained butterfly-like conformation and their HIV-RT inhibitory activity. Bioorg Med Chem Lett 2018; 28:425-428. [DOI: 10.1016/j.bmcl.2017.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
|
36
|
Shao J, Zhu M, Gao L, Chen H, Li X. Synthesis of tetracyclic azasugars fused benzo[ e ][1,3]thiazin-4-one by the tandem Staudinger/aza-Wittig/cyclization and their HIV-RT inhibitory activity. Carbohydr Res 2018; 456:45-52. [DOI: 10.1016/j.carres.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
|
37
|
Nierengarten JF, Schneider JP, Trinh TMN, Joosten A, Holler M, Lepage ML, Bodlenner A, García-Moreno MI, Ortiz Mellet C, Compain P. Giant Glycosidase Inhibitors: First- and Second-Generation Fullerodendrimers with a Dense Iminosugar Shell. Chemistry 2018; 24:2483-2492. [DOI: 10.1002/chem.201705600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Jérémy P. Schneider
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Antoine Joosten
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Mathieu L. Lepage
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Anne Bodlenner
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - M. Isabel García-Moreno
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; Profesor García González 1 41012 Sevilla Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; Profesor García González 1 41012 Sevilla Spain
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|
38
|
Matassini C, Vanni C, Goti A, Morrone A, Marradi M, Cardona F. Multimerization of DAB-1 onto Au GNPs affords new potent and selective N-acetylgalactosamine-6-sulfatase (GALNS) inhibitors. Org Biomol Chem 2018; 16:8604-8612. [DOI: 10.1039/c8ob02587h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold glyconanoparticles (Au GNPs) decorated with the natural iminosugar DAB-1 at different densities are reported.
Collapse
Affiliation(s)
- C. Matassini
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
- Associated with CNR-INO and LENS
| | - C. Vanni
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
| | - A. Goti
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
- Associated with CNR-INO and LENS
| | - A. Morrone
- Paediatric Neurology Unit and Laboratories
- Neuroscience Department
- Meyer Children's Hospital
- and Department of Neurosciences
- Pharmacology and Child Health
| | - M. Marradi
- CIC biomaGUNE and CIBER-BBN
- Donostia-San Sebastián
- Spain
| | - F. Cardona
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
- Associated with CNR-INO and LENS
| |
Collapse
|
39
|
Cocaud C, Maujoin A, Zheng RB, Lowary TL, Rodrigues N, Percina N, Chartier A, Buron F, Routier S, Nicolas C, Martin OR. Triazole-Linked Iminosugars and Aromatic Systems as Simplified UDP-Galf
Mimics: Synthesis and Preliminary Evaluation as Galf
-Transferase Inhibitors. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chloé Cocaud
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Audrey Maujoin
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Ruixiang B. Zheng
- Alberta Glycomics Centre and Department of Chemistry; University of Alberta; GunningLemieux Chemistry Centre; 11227 Saskatchewan Drive T6G 2G2 Edmonton, Alberta Canada
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry; University of Alberta; GunningLemieux Chemistry Centre; 11227 Saskatchewan Drive T6G 2G2 Edmonton, Alberta Canada
| | - Nuno Rodrigues
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Nathalie Percina
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Agnes Chartier
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique; UMR CNRS 7311; Université d'Orléans; Rue de Chartres, BP 6759 45067 Orléans CEDEX 2 France
| |
Collapse
|
40
|
Mirabella S, D'Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jiménez-Barbero J, Cardona F. Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases. Chemistry 2017; 23:14585-14596. [DOI: 10.1002/chem.201703011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Giampiero D'Adamio
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Sandra Delgado
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Ana Gimeno
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Inmaculada Robina
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Antonio J. Moreno-Vargas
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Sergej Šesták
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Dúbravska cesta 9 84538 Bratislava Slovakia
| | - Jesús Jiménez-Barbero
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 5 48005 Bilbao Spain
- Departament Organic Chemistry II; EHU-UPV; 48040 Leioa Spain
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| |
Collapse
|
41
|
Ortiz Mellet C, Nierengarten JF, García Fernández JM. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. J Mater Chem B 2017; 5:6428-6436. [PMID: 32264409 DOI: 10.1039/c7tb00860k] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The last decade has witnessed a series of discoveries that question the traditional paradigm of multivalency as a "safe" strategy to enhance the binding affinity of a lectin receptor to its cognate carbohydrate ligand. Upon following the initial reports on the supplementary effects operating in the presence of a third carbohydrate species (heteromultivalent effect), the observation of functional promiscuity of glyco(mimetic)ligands elicited by (hetero)multivalency, spreading from lectins to glycoprocessing enzymes (inhibitory multivalent effect), has raised concerns about the potential consequences of glyconanomaterials binding to non-cognate proteins and creating messiness or noise in the processes they participate in. Carbon-based glycomaterials, specifically glyconanodiamonds and glycofullerenes, have been instrumental in increasing our awareness of the frequency of these lectin-enzyme crosstalk behaviours elicited by multivalency, driving a reformulation of the rules and concepts in glycoscience towards a "generalized multivalency" scenario.
Collapse
Affiliation(s)
- Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41011 Sevilla, Spain.
| | | | | |
Collapse
|
42
|
Trinh TMN, Holler M, Schneider JP, García-Moreno MI, García Fernández JM, Bodlenner A, Compain P, Ortiz Mellet C, Nierengarten JF. Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. J Mater Chem B 2017; 5:6546-6556. [PMID: 32264416 DOI: 10.1039/c7tb01052d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An ultra-fast synthetic procedure based on grafting of twelve fullerene macromonomers onto a fullerene hexa-adduct core was used for the preparation of a giant molecule with 120 peripheral iminosugar residues. The inhibition profile of this giant iminosugar ball was evaluated against various glycosidases. In the particular case of the Jack bean α-mannosidase, a dramatic enhancement of the glycosidase inhibitory effect was observed for the giant molecule with 120 peripheral subunits as compared to that of the corresponding mono- and dodecavalent model compounds.
Collapse
Affiliation(s)
- Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
44
|
García-Moreno MI, Ortega-Caballero F, Rísquez-Cuadro R, Ortiz Mellet C, García Fernández JM. The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry 2017; 23:6295-6304. [PMID: 28240441 DOI: 10.1002/chem.201700470] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 01/06/2023]
Abstract
The vision of multivalency as a strategy limited to achieve affinity enhancements between a protein receptor and its putative sugar ligand (glycotope) has proven too simplistic. On the one hand, binding of a glycotope in a dense glycocalix-like construct to a lectin partner has been shown to be sensitive to the presence of a third sugar entity (heterocluster effect). On the other hand, several carbohydrate processing enzymes (glycosidases and glycosyltransferases) have been found to be also responsive to multivalent presentations of binding partners (multivalent enzyme inhibition), a phenomenon first discovered for iminosugar-type inhibitory species (inhitopes) and recently demonstrated for multivalent carbohydrate constructs. By assessing a series of homo- and heteroclusters combining α-d-glucopyranosyl-related glycotopes and inhitopes, it was shown that multivalency and heteromultivalency govern both kinds of events, allowing for activation, deactivation or enhancement of specific recognition phenomena towards a spectrum of lectin and glycosidase partners in a multimodal manner. This unified scenario originates from the ability of (hetero)multivalent architectures to trigger glycosidase binding modes that are reminiscent of those harnessed by lectins, which should be considered when profiling the biological activity of multivalent architectures.
Collapse
Affiliation(s)
- M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Rocío Rísquez-Cuadro
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-University of Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
45
|
Kanfar N, Tanc M, Dumy P, Supuran CT, Ulrich S, Winum JY. Effective Access to Multivalent Inhibitors of Carbonic Anhydrases Promoted by Peptide Bioconjugation. Chemistry 2017; 23:6788-6794. [DOI: 10.1002/chem.201700241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nasreddine Kanfar
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, ENSCM; Université de Montpellier; 8 rue de l'Ecole Normale 34296 Montpellier Cedex France
| | - Muhammet Tanc
- Neurofarba Department; Section of Pharmaceutical and Nutriceutical Sciences; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, ENSCM; Université de Montpellier; 8 rue de l'Ecole Normale 34296 Montpellier Cedex France
| | - Claudiu T. Supuran
- Neurofarba Department; Section of Pharmaceutical and Nutriceutical Sciences; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, ENSCM; Université de Montpellier; 8 rue de l'Ecole Normale 34296 Montpellier Cedex France
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, ENSCM; Université de Montpellier; 8 rue de l'Ecole Normale 34296 Montpellier Cedex France
| |
Collapse
|
46
|
Dondoni A, Marra A. SuFEx: a metal-free click ligation for multivalent biomolecules. Org Biomol Chem 2017; 15:1549-1553. [DOI: 10.1039/c6ob02458k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sulfonamide-linked glycoclusters and sulfamate-linked BSA-PEG were prepared by coupling a sugar sulfonyl fluoride with a calixarene tetra-amine and a PEG-fluorosulfate with native bovine serum albumin, respectively.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation
- Università di Ferrara
- 44121 Ferrara
- Italy
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
47
|
Matassini C, Parmeggiani C, Cardona F, Goti A. Are enzymes sensitive to the multivalent effect? Emerging evidence with glycosidases. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Gorbunov A, Sokolova N, Kudryashova E, Nenajdenko V, Kovalev V, Vatsouro I. Chiral Heteroditopic Baskets Designed from Triazolated Calixarenes and Short Peptides. Chemistry 2016; 22:12415-23. [PMID: 27444143 DOI: 10.1002/chem.201601818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Cone calix[4]arenes and calix[6]arenes bearing two, three, and four short peptide units each having two chiral carbon atoms were prepared. The syntheses were performed by using an efficient modular approach that includes the Ugi preparation of the azido-peptide followed by its reactions with the propargylated calixarenes under CuAAC (Cu(I) -catalyzed azide-alkyne cycloaddition) conditions. The three novel multitopic hosts were probed for their ability to bind metal ions by UV titration, and showed the highest complexation efficiency towards copper(II) and lead(II). These two cations possessed quite different complexation modes with copper(II) bound predominantly by multiple-triazole sites, in contrast to lead(II), which is stabilized mainly by multiple interactions with amide groups of the peptide units. Circular dichroism data for the free chiral hosts, their equimolar mixtures with copper(II) perchlorate and lead(II) perchlorate, and for tertiary mixtures of all three compounds showed the formation of mono- and binuclear complexes, or a switching behavior, depending on the structure of the host and the addition order of the cations.
Collapse
Affiliation(s)
- Alexander Gorbunov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991, Moscow, Russia
| | - Nadezhda Sokolova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991, Moscow, Russia
| | - Elena Kudryashova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991, Moscow, Russia
| | - Valentine Nenajdenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991, Moscow, Russia
| | - Vladimir Kovalev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991, Moscow, Russia
| | - Ivan Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991, Moscow, Russia.
| |
Collapse
|
49
|
Zelli R, Tommasone S, Dumy P, Marra A, Dondoni A. A Click Ligation Based on SuFEx for the Metal-Free Synthesis of Sugar and Iminosugar Clusters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600732] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier cedex 5 France
| | - Stefano Tommasone
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier cedex 5 France
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier cedex 5 France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; Ecole Nationale Supérieure de Chimie de Montpellier; 8 Rue de l'Ecole Normale 34296 Montpellier cedex 5 France
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation; Università di Ferrara; Via Borsari 46 44121 Ferrara Italy
| |
Collapse
|
50
|
Abellán Flos M, García Moreno MI, Ortiz Mellet C, García Fernández JM, Nierengarten JF, Vincent SP. Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Chemistry 2016; 22:11450-60. [DOI: 10.1002/chem.201601673] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Marta Abellán Flos
- Département de Chimie, Laboratoire de Chimie Bio-Organique; University of Namur (UNamur); rue de Bruxelles 61 5000 Namur Belgium
| | - M. Isabel García Moreno
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; C/Prof. García González 1 41012 Sevilla Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; C/Prof. García González 1 41012 Sevilla Spain
| | - Jose Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ); CSIC - Universidad de Sevilla; Av. Américo Vespucio 49, Isla de la Cartuja 41092 Sevilla Spain
| | - Jean-Francois Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg France
| | - Stéphane P. Vincent
- Département de Chimie, Laboratoire de Chimie Bio-Organique; University of Namur (UNamur); rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|