1
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Guo K, Lin X, Duan N, Lu C, Wang Z, Wu S. Detection of acrylamide in food based on MIL-glucose oxidase cascade colorimetric aptasensor. Anal Chim Acta 2024; 1288:342150. [PMID: 38220284 DOI: 10.1016/j.aca.2023.342150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Maillard reaction involves the polymerization, condensation, and other reactions between compounds containing free amino groups and reducing sugars or carbonyl compounds during heat processing. This process endows unique flavors and colors to food, while it can also produce numerous hazards. Acrylamide (AAm) is one of Maillard's hazards with neurotoxicity and carcinogenicity, these effects can trigger mutations and alternations in gene expression in human cells and accelerate organ aging. An accurate and reliable acrylamide detection method with high sensitivity and specificity for future regulatory activities is urgently needed. RESULTS Herein, we constructed a colorimetric aptasensor with the hybridization of MIL-glucose oxidase (MGzyme)-cDNA and magnetic nanoparticle-aptamer (MNP-Apt) to specifically detect AAm. The incorporation of MB-Apt and AAm released MGzyme-cDNA in the supernatant, took the supernatant out, with the addition of glucose and TMB, MGzyme would oxidize glucose, the resulting •OH facilitated the oxidation of colorless TMB to blue ox-TMB. The absorbance value at 652 nm, which indicates the characteristic absorption peak of ox-TMB, exhibited a proportion to the concentration of AAm. MGzyme avoided the addition of harmful intermediate H2O2 and created an acid microenvironment for the catalytic reaction. MNP-Apt possessed the advantages of high specificity and simplified separation. Under optimal conditions, this method displayed a linear range of 0.01-100 μM with the limit of detection of 1.53 nM. With the spiked analysis data cross-verified by ELISA kit, this aptasensor was proven to specifically detect AAm at low concentrations. SIGNIFICANCE This colorimetric aptasensor was the integration of aptamer and the enzyme-cascade system, which could broaden the applicable range of enzyme-cascade system, break the limits of specific detection of substrates, eliminate the need for harmful intermediates, improve the reaction efficiency, implement the specific detection, whilst enabling the accurate detection of AAm. Given these remarkable performances, this method has shown significant potential in the field of food safety inspection.
Collapse
Affiliation(s)
- Kaixi Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Chunxia Lu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Sciences, Shihezi, 83200, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Escoda-Torroella M, Moya C, Ruiz-Torres JA, Fraile Rodríguez A, Labarta A, Batlle X. Selective anisotropic growth of Bi 2S 3 nanoparticles with adjustable optical properties. Phys Chem Chem Phys 2023; 25:3900-3911. [PMID: 36648114 DOI: 10.1039/d2cp05437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report on the controlled synthesis and functionalization in two steps of elongated Bi2S3 nanoparticles within a wide range of sizes. First, we show the effect of the temperature and reaction time on the synthesis of two series of nanoparticles by the reaction of thioacetamide with bismuth(III) neodecanoate in the presence of organic surfactants. At 105 °C and long reaction times, nanoneedles of about 45 nm in length containing larger crystallites are obtained, while highly crystalline nanorods of about 30 nm in length are dominant at 165 °C, regardless of the reaction time. The optical properties of both types of nanoparticles show an enhancement of the band gap compared to bulk Bi2S3. This is likely to arise from quantum confinement effects caused by the small particle dimensions relative to the typical exciton size, together with an increase in near-infrared absorption due to the anisotropic particle shape. Second, a ligand exchange approach has been developed to transfer the Bi2S3 nanoparticles to aqueous solutions by grafting dimercaptosuccinic acid onto the surface of the particles. The as-prepared coated nanoparticles show good stability in water, in a wide biological pH range, and in phosphate-buffered saline solutions. Overall, this work highlights the controlled design at all levels - from the inorganic core to the organic surface coating - of elongated Bi2S3 nanoparticles, leading to a tunable optical response by tuning their morphology and size.
Collapse
Affiliation(s)
- Mariona Escoda-Torroella
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Carlos Moya
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - José A Ruiz-Torres
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Arantxa Fraile Rodríguez
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Amílcar Labarta
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Xavier Batlle
- Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Chen Z, Xiong Y, Ma R, Chen P, Duan L, Yang S, Gisèle IU, You L, Xiao D. A novel magnetic fluid for ultra-fast and highly efficient extraction of N1-methylnicotinamide in urine samples. NEW J CHEM 2023. [DOI: 10.1039/d3nj00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Among the three pre-treatment materials, Fe3O4@HPMC@DMSA NPs were selected to be the best material and were used to perform MSPE-HPLC-UV.
Collapse
Affiliation(s)
- Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ranran Ma
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Le Duan
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuying Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ineza Urujeni Gisèle
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Caldera F, Nisticò R, Magnacca G, Matencio A, Khazaei Monfared Y, Trotta F. Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:754. [PMID: 35269242 PMCID: PMC8911700 DOI: 10.3390/nano12050754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Magnetically driven nanosponges with potential application as targeted drug delivery systems were prepared via the addition of magnetite nanoparticles to the synthesis of cyclodextrin and maltodextrin polymers crosslinked with 1,1'-carbonyldiimidazole. The magnetic nanoparticles were obtained separately via a coprecipitation mechanism involving inorganic iron salts in an alkaline environment. Four composite nanosponges were prepared by varying the content of magnetic nanoparticles (5 wt% and 10 wt%) in the cyclodextrin- and maltodextrin-based polymer matrix. The magnetic nanosponges were then characterised by FTIR, TGA, XRD, FESEM, and HRTEM analysis. The magnetic properties of the nanosponges were investigated via magnetisation curves collected at RT. Finally, the magnetic nanosponges were loaded with doxorubicin and tested as a drug delivery system. The nanosponges exhibited a loading capacity of approximately 3 wt%. Doxorubicin was released by the loaded nanosponges with sustained kinetics over a prolonged period of time.
Collapse
Affiliation(s)
- Fabrizio Caldera
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Roberto Nisticò
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giuliana Magnacca
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Adrián Matencio
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Yousef Khazaei Monfared
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Francesco Trotta
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| |
Collapse
|
6
|
Rahman BMA, Viphavakit C, Chitaree R, Ghosh S, Pathak AK, Verma S, Sakda N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. BIOSENSORS 2022; 12:bios12010042. [PMID: 35049670 PMCID: PMC8773603 DOI: 10.3390/bios12010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 05/22/2023]
Abstract
The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core-shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors.
Collapse
Affiliation(s)
- B. M. Azizur Rahman
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Correspondence:
| | - Charusluk Viphavakit
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Ratchapak Chitaree
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Souvik Ghosh
- Department of Electronic and Electrical Engineering, University College London, Gower St., London WC1E 6AE, UK;
| | - Akhilesh Kumar Pathak
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Sneha Verma
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
| | - Natsima Sakda
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
7
|
Sani S, Adnan R, Oh WD, Iqbal A. Comparison of the Surface Properties of Hydrothermally Synthesised Fe 3O 4@C Nanocomposites at Variable Reaction Times. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2742. [PMID: 34685183 PMCID: PMC8537566 DOI: 10.3390/nano11102742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
The influence of variable reaction time (tr) on surface/textural properties (surface area, total pore volume, and pore diameter) of carbon-encapsulated magnetite (Fe3O4@C) nanocomposites fabricated by a hydrothermal process at 190 °C for 3, 4, and 5 h was studied. The properties were calculated using the Brunauer-Emmett-Teller (BET) isotherms data. The nanocomposites were characterised using Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetry, and scanning and transmission electron microscopies. Analysis of variance shows tr has the largest effect on pore volume (F value = 1117.6, p value < 0.0001), followed by the surface area (F value = 54.8, p value < 0.0001) and pore diameter (F value = 10.4, p value < 0.001) with R2-adjusted values of 99.5%, 88.5% and 63.1%, respectively. Tukey and Fisher tests confirmed tr rise to have caused increased variations in mean particle sizes (11-91 nm), crystallite sizes (5-21 nm), pore diameters (9-16 nm), pore volume (0.017-0.089 cm3 g-1) and surface area (7.6-22.4 m2 g-1) of the nanocomposites with individual and simultaneous confidence limits of 97.9 and 84.4 (p-adj < 0.05). The nanocomposites' retained Fe-O vibrations at octahedral (436 cm-1) and tetrahedral (570 cm-1) cubic ferrite sites, modest thermal stability (37-60 % weight loss), and large volume-specific surface area with potential for catalytic application in advanced oxidation processes.
Collapse
Affiliation(s)
- Sadiq Sani
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (S.S.); (W.-D.O.); (A.I.)
- Department of Applied Chemistry, Federal University Dutsin-Ma, Dutsinma P.M.B. 5001, Nigeria
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (S.S.); (W.-D.O.); (A.I.)
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (S.S.); (W.-D.O.); (A.I.)
| | - Anwar Iqbal
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (S.S.); (W.-D.O.); (A.I.)
| |
Collapse
|
8
|
Somu P, Paul S. Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mustapić M, Glumac Z, Heffer M, Zjalić M, Prološčić I, Masud M, Blažetić S, Vuković A, Billah M, Khan A, Šegota S, Al Hossain MS. AC/DC magnetic device for safe medical use of potentially harmful magnetic nanocarriers. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124918. [PMID: 33422751 DOI: 10.1016/j.jhazmat.2020.124918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Continuing our previous research work on a drug delivery system based on combined AC/DC magnetic fields, we have developed a prototype AC/DC magnetic syringe device for stimulation of drug release from drug carriers, with the options of injecting/removing drug carriers. The porous Fe3O4 carrier, in a dose-dependent manner, causes acute oxidative damage and reduces the viability of differentiated SH-SY5Y human neuroblastoma cells, indicating the necessity for its removal once it reaches the therapeutic concentration at the target tissue. The working mechanism of the device consists of three simple steps. First, direct injection of the drug adsorbed on the surface of a carrier via a needle inserted into the targeted area. The second step is stimulation of drug release using a combination of AC magnetic field (a coil magnetised needle with AC current) and permanent magnets (DC magnetic lens outside of the body), and the third step is removal of the drug carriers from the injected area after the completion of drug release by magnetising the tip of the needle with DC current. Removing the drug carriers allows us to avoid possible acute and long term side effects of the drug carriers in the patient's body, as well as any potential response of the body to the drug carriers.
Collapse
Affiliation(s)
- Mislav Mustapić
- Department of Physics, University of Osijek, 31000 Osijek, Croatia.
| | - Zvonko Glumac
- Department of Physics, University of Osijek, 31000 Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, JJ Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, JJ Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Ivan Prološčić
- Department of Physics, University of Osijek, 31000 Osijek, Croatia
| | - Mostafa Masud
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia
| | - Senka Blažetić
- Department of Biology, J.J. Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, 31000 Osijek, Croatia
| | - Ana Vuković
- Department of Biology, J.J. Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, 31000 Osijek, Croatia
| | - Motasim Billah
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia; School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Md Shahriar Al Hossain
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia; School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia.
| |
Collapse
|
10
|
Sánchez J, Rodríguez-Reyes M, Cortés-Hernández DA, Ávila-Orta CA, Reyes-Rodríguez PY. Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Ulloa J, Barberá J, Serrano JL. Controlled Growth of Dendrimer-Coated Gold Nanoparticles: A Solvent-Free Process in Mild Conditions. ACS OMEGA 2021; 6:348-357. [PMID: 33458486 PMCID: PMC7807749 DOI: 10.1021/acsomega.0c04662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/26/2020] [Indexed: 05/16/2023]
Abstract
Monodisperse dendrimer-coated gold nanoparticles with a spherical shape have been obtained by direct reduction of HAuCl4 with sodium borohydride in the presence of dodecanethiol as a stabilizer and subsequent functionalization by ligand exchange reaction with polybenzylic thiolated dendrons. The substitution pattern of the dendrimeric units plays a fundamental role in the rate of the functionalization exchange process and consequently conditions the size and the polydispersity of the NPs obtained. An ulterior growth process occurs by thermal stimuli (150 °C) in a solvent-free environment. This method, carried out in mild conditions, allows the formation of highly monodisperse gold NPs with different sizes for different time reactions, and we discuss the mechanisms involved in this process. Finally, we demonstrate the chemical composition and stability of our compounds by structural, thermal, and chemical characterization of the samples before and after thermal treatment.
Collapse
Affiliation(s)
- José
Antonio Ulloa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/Pedro
Cerbuna 12, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C Concepción, Chile
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/Pedro
Cerbuna 12, 50009 Zaragoza, Spain
| | - José Luis Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/Pedro
Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. NANO SELECT 2020. [DOI: 10.1002/nano.202000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yi‐Jun Liang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Jun Xie
- School of Life Science Jiangsu Normal University Xuzhou 221116 P.R. China
| | - Jing Yu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Zhaoguang Zheng
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Fang Liu
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Anping Yang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| |
Collapse
|
13
|
Wang M, Bao T, Yan W, Fang D, Yu Y, Liu Z, Yin G, Wan M, Mao C, Shi D. Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models. Bioact Mater 2020; 6:1140-1149. [PMID: 33134607 PMCID: PMC7588752 DOI: 10.1016/j.bioactmat.2020.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do not have the motion ability, thus the efficiency of the contact between the adsorbent and the Pb(II)-contaminated Hb is relatively low. Herein, a kind of magnetic nanomotor adsorbent with movement ability under alternating magnetic field based on Fe3O4 nanoparticle modified with meso-2, 3-dimercaptosuccinic acid (DMSA) was prepared and a blood Pb(II) removal strategy was further proposed. During the removal process, the nanomotor adsorbent can enter the RBCs, then the contact probability between the nanomotor adsorbent and the Pb(II)-contaminated Hb can be increased by the active movement of nanomotor. Through the strong coordination of functional groups in DMSA, the nanomotor adsorbent can adsorb Pb(II), and finally be separated from blood by permanent magnetic field. The in vivo extracorporeal blood circulation experiment verifies the ability of the adsorbent to remove blood Pb(II) in pig models, which may provide innovative ideas for blood heavy metal removal in the future.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianyi Bao
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guoyong Yin
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
- Corresponding author.
| |
Collapse
|
14
|
|
15
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
16
|
Sharma KS, Dubey AK, Koijam AS, Kumar C, Ballal A, Mukherjee S, Phadnis PP, Vatsa RK. Synthesis of 2-deoxy- d-glucose coated Fe 3O 4 nanoparticles for application in targeted delivery of the Pt( iv) prodrug of cisplatin – a novel approach in chemotherapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj05989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(IV) prodrug of cisplatin was loaded on 2DG functionalized silica coated Fe3O4 nanoparticles. The formulation alone exhibited biocompatibility whereas Pt(IV) loaded formulation exhibited cytotoxicity comparable with cisplatin.
Collapse
Affiliation(s)
| | - Akhil K. Dubey
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Arunkumar S. Koijam
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Chandan Kumar
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Anand Ballal
- Molecular Biology Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Sudip Mukherjee
- UGC-DAE Consortium for Scientific Research
- Mumbai Centre
- Mumbai-400 085
- India
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| | - Rajesh K. Vatsa
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
17
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
18
|
|
19
|
Piché D, Tavernaro I, Fleddermann J, Lozano JG, Varambhia A, Maguire ML, Koch M, Ukai T, Hernández Rodríguez AJ, Jones L, Dillon F, Reyes Molina I, Mitzutani M, González Dalmau ER, Maekawa T, Nellist PD, Kraegeloh A, Grobert N. Targeted T 1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe 2O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6724-6740. [PMID: 30688055 PMCID: PMC6385080 DOI: 10.1021/acsami.8b17162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Extraordinarily small (2.4 nm) cobalt ferrite nanoparticles (ESCIoNs) were synthesized by a one-pot thermal decomposition approach to study their potential as magnetic resonance imaging (MRI) contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly crystalline cubic spinel particles with atomic resolution. Ligand exchange with dimercaptosuccinic acid rendered the particles stable in physiological conditions with a hydrodynamic diameter of 12 nm. The particles displayed superparamagnetic properties and a low r2/ r1 ratio suitable for a T1 contrast agent. The particles were functionalized with bile acid, which improved biocompatibility by significant reduction of reactive oxygen species generation and is a first step toward liver-targeted T1 MRI. Our study demonstrates the potential of ESCIoNs as T1 MRI contrast agents.
Collapse
Affiliation(s)
- Dominique Piché
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
| | - Isabella Tavernaro
- INM
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Jana Fleddermann
- INM
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Juan G. Lozano
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
| | - Aakash Varambhia
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
| | - Mahon L. Maguire
- British
Heart Foundation Experimental Magnetic Resonance Unit, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - Marcus Koch
- INM
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Tomofumi Ukai
- Bio-Nano
Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Armando J. Hernández Rodríguez
- Departamento
de Imágenes por Resonancia Magnética, Cuban Neurosciences Center, Street 190 e/25 and 27, Cubanacan
Playa, Havana CP 11600, Cuba
| | - Lewys Jones
- Advanced
Microscopy Laboratory, Centre for Research
on Adaptive Nanostructures and Nanodevices (CRANN), Dublin 2, Ireland
- School of
Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Frank Dillon
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
| | - Israel Reyes Molina
- Departamento
de Imágenes por Resonancia Magnética, Cuban Neurosciences Center, Street 190 e/25 and 27, Cubanacan
Playa, Havana CP 11600, Cuba
| | - Mai Mitzutani
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
- Department
of Material Science and Engineering, Tokyo
Institute of Technology, S8-25, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Evelio R. González Dalmau
- Departamento
de Imágenes por Resonancia Magnética, Cuban Neurosciences Center, Street 190 e/25 and 27, Cubanacan
Playa, Havana CP 11600, Cuba
| | - Toru Maekawa
- Bio-Nano
Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Peter D. Nellist
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
| | - Annette Kraegeloh
- INM
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Nicole Grobert
- Materials
Department, University of Oxford, Parks Road, Oxford OX1 3PH, England
- Williams Advanced Engineering, Grove, Oxfordshire, OX12
0DQ, England
| |
Collapse
|
20
|
Shi Y, Zhang J, He J, Liu D, Meng X, Huang T, He H. A method of detecting two tumor markers (p-hydroxybenzoic acid and p-cresol) in human urine using a porous magnetic <beta>-cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis. Talanta 2018; 191:133-140. [PMID: 30262042 DOI: 10.1016/j.talanta.2018.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
Abstract
Analyzing of tumor markers has become an important means for cancer diagnosis and prevention. In this study, a novel solid phase extraction based on porous magnetic cyclodextrin polymer (MA-CD) was developed and used for detection of trace small molecule gastric tumor markers in urine samples. The adsorption properties of the magnetic cyclodextrin polymer were tested. Through experiments of the solid phase extraction (SPE) at the different condition, the optimal condition was selected to test the two tumor markers by High-performance-liquid chromatography -Diode array detector (HPLC-DAD). The analytical performance of the method showed good accuracy (88.82%-104.34%) and precision (< 3.55%), appropriated detection limits (1.016 and 5.714 μg L-1) and linear ranges (0.6-24.0 μg L-1) with convenient determination coefficients (> 0.9994). The results demonstrated that the developed approach is efficient, low-cost for gastric tumor markers detection.
Collapse
Affiliation(s)
- Yi Shi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jingyi Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jia He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Donghao Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaoyan Meng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Tao Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Patel K, Singh N, Nayak JM, Jha B, Sahoo SK, Kumar R. Environmentally Friendly Inorganic Magnetic Sulfide Nanoparticles for Efficient Adsorption-Based Mercury Remediation from Aqueous Solution. ChemistrySelect 2018. [DOI: 10.1002/slct.201702851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Khushbu Patel
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Nimisha Singh
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Jyotsna M. Nayak
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Babli Jha
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Suban K. Sahoo
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Rajender Kumar
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| |
Collapse
|
22
|
Jaiswal KK, Manikandan D, Murugan R, Ramaswamy AP. Microwave-assisted rapid synthesis of Fe3O4/poly(styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles Coated with PEG/PEI for Biomedical Applications: A Facile and Scalable Preparation Route Based on the Cathodic Electrochemical Deposition Method. ACTA ACUST UNITED AC 2017. [DOI: 10.1155/2017/9437487] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cathodic electrochemical deposition (CED) is introduced as an efficient and effective method for synthesis and surface coating of superparamagnetic iron oxide nanoparticles (SPIONs). In this way, bare Fe3O4 nanoparticles were electrosynthesized through CED method from aqueous solution Fe3+ : Fe2+ chloride (molar ratio of 2 : 1). In the next step, the surface of NPs was coated with polyethyleneimine (PEI) and polyethylene glycol (PEG) during the CED procedure, and PEG/PEI coated SPIONs were obtained. The prepared NPs were evaluated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning electron microscopy (FE-SEM). The pure magnetite phase and nanosize (about 15 nm) of the prepared NPs were confirmed by XRD and FE-SEM. The presence of two coats (i.e., PEG and PEI) on the surface of electrosynthesized NPs was proved via FTIR results. The percentage of polymer coat (37.5%) on the NPs surface was provided by TGA analysis. The high magnetization value, negligible coercivity, and remanence measured by VSM indicate the superparamagnetic nature of both prepared NPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physicochemical and magnetic properties for biomedical applications.
Collapse
|
24
|
Hesampour M, Ali Taher M, Behzadi M. Synthesis, characterization and application of a MnFe2O4@poly(o-toluidine) nanocomposite for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons. NEW J CHEM 2017. [DOI: 10.1039/c7nj01742a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanocomposite of poly(o-toluidine)-coated MnFe2O4 magnetic nanoparticles with a core–shell structure was synthesized by the chemical co-precipitation method and employed as a magnetic adsorbent for solid-phase extraction of ten polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Mojgan Hesampour
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | | | - Mansoureh Behzadi
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| |
Collapse
|
25
|
Davis K, Cole B, Ghelardini M, Powell BA, Mefford OT. Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13716-13727. [PMID: 27966977 DOI: 10.1021/acs.langmuir.6b03644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ligand exchange on the surface of hydrophobic iron oxide nanoparticles is a common method for controlling surface chemistry for a desired application. Furthermore, ligand exchange with small-molecule ligands may be necessary to obtain particles with a specific size or functionality. Understanding to what extent ligand exchange occurs and what factors affect it is important for the optimization of this critical procedure. However, quantifying the amount of exchange may be difficult because of the limitations of commonly used characterization techniques. Therefore, we utilized a radiotracer technique to track the exchange of a radiolabeled 14C-oleic acid ligand with hydrophilic small-molecule ligands on the surface of iron oxide nanoparticles. Iron oxide nanoparticles functionalized with 14C-oleic acid were modified with small-molecule ligands with terminal functional groups including catechols, phosphonates, sulfonates, thiols, carboxylic acids, and silanes. These moieties were selected because they represent the most commonly used ligands for this procedure. The effectiveness of these molecules was compared using both procedures widely found in the literature and using a standardized procedure. After ligand exchange, the nanoparticles were analyzed using liquid scintillation counting (LSC) and inductively coupled plasma-mass spectrometry. The labeled and unlabeled particles were further characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) to determine the particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and vibrating sample magnetometry (VSM) to confirm the presence of the small molecules on the particles and verify the magnetic properties, respectively. Radioanalytical determination of 14C-oleic acid was used to calculate the total amount of oleic acid remaining on the surface of the particles after ligand exchange. The results revealed that the ligand-exchange reactions performed using widely cited procedures did not go to completion. Residual oleic acid remained on the particles after these reactions and the reactions using a standardized protocol. A comparison of the ligand-exchange procedures indicated that the binding moiety, multidenticity, reaction time, temperature, and presence of a catalyst impacted the extent of exchange. Quantification of the oleic acid remaining after ligand exchange revealed a binding hierarchy in which catechol-derived anchor groups displace the most oleic acid on the surface of the nanoparticles and the thiol group displaces the least amount of oleic acid. Thorough characterization of ligand exchange is required to develop nanoparticles suitable for their intended application.
Collapse
Affiliation(s)
| | - Brian Cole
- Department of Chemistry, Henderson State University , Arkadelphia, Arkansas 71999, United States
| | | | | | | |
Collapse
|
26
|
Kredentser S, Bugaeva L, Derzhypolski A, Cherepanov D, Malynych S, Castro N, Davidson P, Reznikov Y. Stability criteria for aqueous colloidal vanadium pentoxide suspensions doped with magnetite nanoparticles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Xiong Z, Li S, Xia Y. Highly stable water-soluble magnetic nanoparticles synthesized through combined co-precipitation, surface-modification, and decomposition of a hybrid hydrogel. NEW J CHEM 2016. [DOI: 10.1039/c6nj02051h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesized magnetic nanoparticles were stable not only in aqueous media but also in mixtures of water and hydrophilic organic solvents.
Collapse
Affiliation(s)
- Zhong Xiong
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
- Collaborative Innovation Center for Marine Biomass Fibers and Textiles of Shandong Province
| | - Shaohua Li
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yanzhi Xia
- Collaborative Innovation Center for Marine Biomass Fibers and Textiles of Shandong Province
- Institute of Marine Biobased Materials
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|