1
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions. Molecules 2023; 28:molecules28052302. [PMID: 36903548 PMCID: PMC10005697 DOI: 10.3390/molecules28052302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The Lewis-acidic character and robustness of NHC-Au(I) complexes enable them to catalyze a large number of reactions, and they are enthroned as the catalysts of choice for many transformations among polyunsaturated substrates. More recently, Au(I)/Au(III) catalysis has been explored either by utilizing external oxidants or by seeking oxidative addition processes with catalysts featuring pendant coordinating groups. Herein, we describe the synthesis and characterization of N-heterocyclic carbene (NHC)-based Au(I) complexes, with and without pendant coordinating groups, and their reactivity in the presence of different oxidants. We demonstrate that when using iodosylbenzene-type oxidants, the NHC ligand undergoes oxidation to afford the corresponding NHC=O azolone products concomitantly with quantitative gold recovery in the form of Au(0) nuggets ~0.5 mm in size. The latter were characterized by SEM and EDX-SEM showing purities above 90%. This study shows that NHC-Au complexes can follow decomposition pathways under certain experimental conditions, thus challenging the believed robustness of the NHC-Au bond and providing a novel methodology to produce Au(0) nuggets.
Collapse
|
3
|
Vassilyeva OY, Buvaylo EA, Kokozay VN, Skelton BW. Synthesis, crystal structure and Hirshfeld surface analysis of the hybrid salt bis-(2-methyl-imidazo[1,5- a]pyridin-2-ium) tetra-chlorido-manganate(II). Acta Crystallogr E Crystallogr Commun 2023; 79:397-401. [PMID: 37057024 PMCID: PMC10088312 DOI: 10.1107/s2056989023002761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
The 0-D hybrid salt bis-(2-methyl-imidazo[1,5-a]pyridin-2-ium) tetra-chlorido-manganate(II), (C8H9N2)2[MnCl4] or [L]2[MnCl4], consists of discrete L + cations and tetra-chlorido-manganate(II) anions. The fused heterocyclic rings in the two crystallographically non-equivalent monovalent organic cations are almost coplanar; the bond lengths are as expected. The tetra-hedral MnCl4 2- dianion is slightly distorted with the Mn-Cl bond lengths varying from 2.3577 (7) to 2.3777 (7) Å and the Cl-Mn-Cl angles falling in the range 105.81 (3)-115.23 (3)°. In the crystal, the compound demonstrates a pseudo-layered arrangement of separate organic and inorganic sheets alternating parallel to the bc plane. In the organic layer, pairs of centrosymmetrically related trans-oriented L + cations are π-stacked. Neighboring MnCl4 2- dianions in the inorganic sheet show no connectivity, with the minimal Mn⋯Mn distance exceeding 7 Å. The Hirshfeld surface analysis revealed the prevalence of the non-conventional C-H⋯Cl-Mn hydrogen bonding in the crystal packing.
Collapse
Affiliation(s)
- Olga Yu. Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Elena A. Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Vladimir N. Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Brian W. Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Vassilyeva OY, Buvaylo EA, Kokozay VN, Sobolev AN. Organic-inorganic hybrid hexa-chlorido-stannate(IV) with 2-methyl-imidazo[1,5- a]pyridin-2-ium cation. Acta Crystallogr E Crystallogr Commun 2023; 79:103-106. [PMID: 36793413 PMCID: PMC9912472 DOI: 10.1107/s2056989023000324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
The hybrid salt bis-(2-methyl-imidazo[1,5-a]pyridin-2-ium) hexa-chlorido-stannate(IV), (C8H9N2)2[SnCl6], crystallizes in the monoclinic space group P21/n with the asymmetric unit containing an Sn0.5Cl3 fragment (Sn site symmetry ) and one organic cation. The five- and six-membered rings in the cation are nearly coplanar; bond lengths in the pyridinium ring of the fused core are as expected; the C-N/C bond distances in the imidazolium entity fall in the range 1.337 (5)-1.401 (5) Å. The octa-hedral SnCl6 2- dianion is almost undistorted with the Sn-Cl distances varying from 2.4255 (9) to 2.4881 (8) Å and the cis Cl-Sn-Cl angles approaching 90°. In the crystal, π-stacked chains of cations and loosely packed SnCl6 2- dianions form separate sheets alternating parallel to (101). Most of the numerous C-H⋯Cl-Sn contacts between the organic and inorganic counterparts with the H⋯Cl distances above the van der Waals contact limit of 2.85 Å are considered a result of crystal packing.
Collapse
Affiliation(s)
- Olga Yu. Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Elena A. Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Vladimir N. Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Alexandre N. Sobolev
- School of Molecular Sciences, M310, the University of Western Australia, 35 Stirling Highway, Perth, 6009, W.A., Australia
| |
Collapse
|
5
|
Mondal A, Sahu P, Kisan HK, Isab AA, Chandra SK, Dinda J. Dinuclear silver(I)- and gold(I)- N heterocyclic carbene complexes; synthesis, structural characterizations, Photoluminescence and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Sheikh KUN, Amin H, Haque RA, Abdul Majid AS, Yaseen M, Iqbal MA. An overview of synthetic methodologies of organometallic and coordination compounds of gold. J COORD CHEM 2021. [DOI: 10.1080/00958972.2020.1866176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Hira Amin
- Department of Chemistry, University of Agriculture, Faislababd, Pakistan
| | - Rosenani A Haque
- School of Chemical Science, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Muhammad Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faislababd, Pakistan
- Organometallic & Coordination Chemistry Laboratory, University of Agriculture, Faislababd, Pakistan
| |
Collapse
|
8
|
Chernyshev VM, Denisova EA, Eremin DB, Ananikov VP. The key role of R-NHC coupling (R = C, H, heteroatom) and M-NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chem Sci 2020; 11:6957-6977. [PMID: 33133486 PMCID: PMC7553045 DOI: 10.1039/d0sc02629h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023] Open
Abstract
Complexes of metals with N-heterocyclic carbene ligands (M/NHC) are typically considered the systems of choice in homogeneous catalysis due to their stable metal-ligand framework. However, it becomes obvious that even metal species with a strong M-NHC bond can undergo evolution in catalytic systems, and processes of M-NHC bond cleavage are common for different metals and NHC ligands. This review is focused on the main types of the M-NHC bond cleavage reactions and their impact on activity and stability of M/NHC catalytic systems. For the first time, we consider these processes in terms of NHC-connected and NHC-disconnected active species derived from M/NHC precatalysts and classify them as fundamentally different types of catalysts. Problems of rational catalyst design and sustainability issues are discussed in the context of the two different types of M/NHC catalysis mechanisms.
Collapse
Affiliation(s)
- Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
| | - Ekaterina A Denisova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | - Dmitry B Eremin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
- The Bridge@USC , University of Southern California , 1002 Childs Way , Los Angeles , California 90089-3502 , USA
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
9
|
Iacopetta D, Rosano C, Sirignano M, Mariconda A, Ceramella J, Ponassi M, Saturnino C, Sinicropi MS, Longo P. Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals (Basel) 2020; 13:ph13050091. [PMID: 32403274 PMCID: PMC7281280 DOI: 10.3390/ph13050091] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Herein, we report the synthesis and the multiple anti-tumor properties of new gold and silver carbene complexes. The chemical modifications, grounded on our previous studies, led us to identify a good lead complex, gold-based, whose biological features are very exciting and promising in the anti-cancer research and could be further developed. Indeed, the bis-[4,5-dichloro-(N-methyl-N’(2-hydroxy-2-phenyl)ethyl-imidazole-2-ylidene)gold(I)]+[dichloro-gold]− (AuL7) complex possesses the ability to interfere with at least three important and different intracellular targets, namely the human topoisomerases I and II and tubulin, which are able to modulate metabolic processes not directly correlated each other. We proved that the modifications of the ligands structure in AuL7, with respect to another already published complex, i.e., bis-[4,5-dichloro-(N-methyl-N’(cyclopentane-2ol)-imidazole-2-ylidine)gold(I)]+[dichloro-gold]− (AuL4), produce a different behavior toward tubulin-polymerization process, since AuL7 is a tubulin-polymerization inhibitor and AuL4 a stabilizer, with the final same result of hampering the tumor growth. Taken together, our outcomes designate AuL7 as a promising compound for the development of multi-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Marco Sirignano
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|
10
|
Gupta A, Nigam S, Avasthi I, Sharma B, Ateeq B, Verma S. Caspase-3 mediated programmed cell death by a gold-stabilised peptide carbene. Bioorg Med Chem Lett 2019; 29:126672. [PMID: 31570209 DOI: 10.1016/j.bmcl.2019.126672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 01/11/2023]
Abstract
The synthesis of novel N-heterocyclic carbene complexes derived from a tripeptide ligand (L), containing non-natural amino acid, thiazolylalanine is described here. The peptide ligand was reacted with suitable precursors to generate gold and mercury carbene complexes. The plausible structures of both complexes were predicted by spectroscopic data and DFT calculations. The binding energy data was also analyzed to predict their stability. The gold carbene complex (1A), showed activity against MCF7 breast cancer cell line due to mitochondrial triggered caspase-3 mediated programmed cell death. Its internalization inside cells could be observed due to autofluorescence. This study affords a methodology for successful generation of peptide carbene complexes for their therapeutic potential.
Collapse
Affiliation(s)
- Astha Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shivansh Nigam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ilesha Avasthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Bushra Ateeq
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
11
|
Bauer EB, Bernd MA, Schütz M, Oberkofler J, Pöthig A, Reich RM, Kühn FE. Synthesis, characterization, and biological studies of multidentate gold(i) and gold(iii) NHC complexes. Dalton Trans 2019; 48:16615-16625. [PMID: 31657405 DOI: 10.1039/c9dt03183a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and characterization of a novel macrocyclic Au(iii) N-heterocyclic carbene (NHC) imidazolyl complex, a novel macrocyclic tetra-NHC benzimidazole ligand, and the corresponding Ag(i) and Au(i) complexes are presented. Single-crystal X-ray diffraction analysis of the Au(i) benzimidazolyl complex 3 reveals an unusual structure, differing from the respective Au(i) imidazolyl complex 4. Both complexes have a Au4L2 composition; however, 3 has two C-Au(i)-C units acting as a connection between the two ligands with two Au(i) atoms being linearly coordinated inside the cavity of the macrocyclic ligand. In the case of complex 4, the structure shows a box-type coordination with all four Au(i) atoms being located between the two ligands. Stability studies in cell culture medium are performed for subsequent MTT assays and they show an unprecedented proton-to-deuterium exchange of the methylene bridge of the Au(iii) imidazolyl complex. In MTT assays, the tetranuclear acyclic Au(i) complex 5 displays the lowest IC50 values in MCF-7, PC3, and A2780cisR cells with a selective cytotoxicity for MCF-7 and A2780cisR cells.
Collapse
Affiliation(s)
- Elisabeth B Bauer
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Marco A Bernd
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany. and Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany
| | - Jens Oberkofler
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Alexander Pöthig
- Single Crystal XRD Laboratory of the Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85747 Garching bei München, Germany
| | - Robert M Reich
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| | - Fritz E Kühn
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.
| |
Collapse
|
12
|
Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev 2019; 48:447-462. [DOI: 10.1039/c8cs00570b] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review covers the recent advances made in the study of gold complexes containing N-heterocyclic carbene ligands with biological properties.
Collapse
Affiliation(s)
- Malka Mora
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Renso Visbal
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
- Departamento de Gestión Industrial
| |
Collapse
|
13
|
Mondal A, Tripathy RK, Dutta P, Santra MK, Isab AA, Bielawski CW, Kisan HK, Chandra SK, Dinda J. Ru(II)-based antineoplastic: A “wingtip” N-heterocyclic carbene facilitates access to a new class of organometallics that are cytotoxic to common cancer cell lines. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ambarish Mondal
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| | - Rajat K. Tripathy
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| | - Parul Dutta
- National Centre for Cell Science; Pune 411007 Maharastra India
| | | | - Anvarhusein A. Isab
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM); Institute for Basic Science (IBS); Ulsan 44919 Republic of Korea
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
- Department of Energy Engineering; Ulsan National Institute of Science and technology (UNIST); Ulsan 44919 Republic of Korea
| | - Hemanta K. Kisan
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| | - Swapan K. Chandra
- Department of Chemistry; Visva Bharati University; Santiniketan 731235 West Bengal India
| | - Joydev Dinda
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| |
Collapse
|
14
|
In vitro and in vivo anti-tumor activity of two gold(III) complexes with isoquinoline derivatives as ligands. Eur J Med Chem 2018; 163:333-343. [PMID: 30529636 DOI: 10.1016/j.ejmech.2018.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Two gold(III) complexes of isoquinoline derivatives: [Au(L1)Cl2] (Au1) and [Au(L2)Cl2] (Au2) have been prepared and characterized. Au1 and Au2 exhibited greater cytotoxicity than their corresponding ligands and cisplatin against T-24 cells. Both complexes arrested cell cycle at S-phase by upregulation of p53, p27, and p21, and downregulation of cyclin A and cyclin E. The depolarization of the mitochondrial membrane potential, generation of ROS, and stimulated Ca2+ release activated the caspase cascade and ultimately caused apoptosis by increasing the levels of Bax and Bak, and decreasing the levels of Bcl-2 and Bcl-xl. Cell apoptosis was achieved via mitochondria mediated pathways. The in vivo studies of Au1 and Au2 demonstrated that they were safer than cisplatin and could effectively inhibit tumor growth.
Collapse
|
15
|
Zhang C, Maddelein ML, Wai-Yin Sun R, Gornitzka H, Cuvillier O, Hemmert C. Pharmacomodulation on Gold-NHC complexes for anticancer applications - is lipophilicity the key point? Eur J Med Chem 2018; 157:320-332. [PMID: 30099254 DOI: 10.1016/j.ejmech.2018.07.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
A series of four new mononuclear cationic gold(I) complexes containing nitrogen functionalized N-heterocyclic carbenes (NHCs) was synthesized and fully characterized by spectroscopic methods. The X-ray structures of three complexes are presented. These lipophilic gold(I) complexes originate from a pharmacomodulation of previously described gold(I)-NHC complexes, by replacing an aliphatic spacer with an aromatic one. The Log P values of the resulting complexes increased by 0.7-1.5, depending on the substituents in comparison to the aliphatic-linker systems. The new series of complexes has been investigated in vitro for their anti-cancer activities in PC-3 (prostate cancer) and T24 (bladder cancer) cell lines and in the non-cancerous MC3T3 (osteoblast) cell line. All tested complexes show high activities against the cancer cell lines with GI50 values lower than 500 nM. One complex (11) has been selected for further investigations. It has been tested in vitro in six cancer cell lines from different origins (prostate, bladder, lung, bone, liver and breast) and two non-cancerous cell lines (osteoblasts, fibroblasts). Moreover, cellular uptake measurements were indicative of a good bioavailability. By various biochemical assays, this complex was found to effectively inhibit the thioredoxin reductase (TrxR) and its cytotoxicity towards prostate PC-3, bladder T24 and liver HepG2 cells was found to be ROS-dependent.
Collapse
Affiliation(s)
- Chen Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Lise Maddelein
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raymond Wai-Yin Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
16
|
Yeo CI, Ooi KK, Tiekink ERT. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules 2018; 23:molecules23061410. [PMID: 29891764 PMCID: PMC6100309 DOI: 10.3390/molecules23061410] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022] Open
Abstract
A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
Collapse
Affiliation(s)
- Chien Ing Yeo
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University. No. 5, Jalan Universiti, Bandar Sunway 47500, Malaysia.
| | - Kah Kooi Ooi
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University. No. 5, Jalan Universiti, Bandar Sunway 47500, Malaysia.
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University. No. 5, Jalan Universiti, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
17
|
Rana BK, Mishra S, Sarkar D, Mondal TK, Seth SK, Bertolasi V, Das Saha K, Bielawski CW, Isab AA, Dinda J. Isoelectronic Pt(ii)– and Au(iii)–N-heterocyclic carbene complexes: a structural and biological comparison. NEW J CHEM 2018. [DOI: 10.1039/c8nj01562g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To differentiate the intrinsic biological activities displayed by Pt vs. Au reagents, a series of square planar carbene complexes were compared.
Collapse
Affiliation(s)
| | - Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Deblina Sarkar
- Department of Chemistry, Jadavpur University
- Kolkata-700032
- India
| | | | - Saikat K. Seth
- Department of Physics, Jadavpur University
- Kolkata-700032
- India
| | - Valerio Bertolasi
- Dipartimento di Chimica and Centro di Strutturistica Diffrattometrica, Universita' di Ferrara
- Italy
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS)
- Ulsan 44919
- Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
| | - Anvarhusein A. Isab
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Joydev Dinda
- Department of Chemistry
- Utkal University
- Bhubaneswar-751004
- India
| |
Collapse
|
18
|
Jhulki L, Dutta P, Santra MK, Cardoso MH, Oshiro KGN, Franco OL, Bertolasi V, Isab AA, Bielawski CW, Dinda J. Synthesis and cytotoxic characteristics displayed by a series of Ag(i)-, Au(i)- and Au(iii)-complexes supported by a common N-heterocyclic carbene. NEW J CHEM 2018. [DOI: 10.1039/c8nj02008f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The design, synthesis and anticancer properties of a series of Ag(i), Au(i) and Au(iii)–NHC complexes supported by pyridyl[1,2-a]{2-acetylylphenylimidazol}-3-ylidene are described.
Collapse
Affiliation(s)
- Lalmohan Jhulki
- School of Applied Science
- Haldia Institute of Technology
- Haldia 721657
- India
| | - Parul Dutta
- National Centre for Cell Science
- Pune 411007
- India
| | | | - Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular
- Faculdade de Medicina
- Universidade de Brasília
- Brasília-DF
- Brazil
| | - Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular
- Faculdade de Medicina
- Universidade de Brasília
- Brasília-DF
- Brazil
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular
- Faculdade de Medicina
- Universidade de Brasília
- Brasília-DF
- Brazil
| | - Valerio Bertolasi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Centro di Strutturistica Diffrattometrica
- Universita' di Ferrara
- Italy
| | - Anvarhusein A. Isab
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM)
- Institute for Basic Science (IBS)
- Ulsan 44919
- Republic of Korea
- Department of Chemistry and Department of Energy Engineering
| | - Joydev Dinda
- Department of Chemistry
- Utkal University
- Bhubaneswar 751004
- India
| |
Collapse
|