1
|
Mourer M, Regnouf-de-Vains JB, Duval RE. Functionalized Calixarenes as Promising Antibacterial Drugs to Face Antimicrobial Resistance. Molecules 2023; 28:6954. [PMID: 37836797 PMCID: PMC10574364 DOI: 10.3390/molecules28196954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. This review provides an overview of the work carried out in this aim towards the development of intrinsically active prodrogues or metallic calixarene complexes. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.
Collapse
Affiliation(s)
- Maxime Mourer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | | | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
2
|
Muñoz-Gacitúa D, Monroy-Cárdenas M, Araya-Maturana R, Weiss-López B. Characterization of an anionic membrane mimetic with natural phospholipid content and magnetic orienting capabilities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Kim KS, Chung YK, Kim H, Ha CY, Huh J, Song C. Additive-free photo-mediated oxidative cyclization of pyridinium acylhydrazones to 1,3,4-oxadiazoles: solid-state conversion in a microporous organic polymer and supramolecular energy-level engineering. RSC Adv 2021; 11:1969-1975. [PMID: 35424154 PMCID: PMC8693755 DOI: 10.1039/d0ra09581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
We discovered the efficient catalyst-free, photo-mediated oxidative cyclization reaction of bis-p-pyridinium benzoyl hydrazone (BH1) to 2-pyridinium-5-phenyl-1,3,4-oxadiazoles.
Collapse
Affiliation(s)
- Kyung-su Kim
- Department of Chemistry
- Sungkyunkwan University
- Suwon-si
- Republic of Korea
| | - You Kyoung Chung
- Department of Chemistry
- Sungkyunkwan University
- Suwon-si
- Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry
- Sungkyunkwan University
- Suwon-si
- Republic of Korea
| | - Chae Yeon Ha
- Department of Chemistry
- Sungkyunkwan University
- Suwon-si
- Republic of Korea
| | - Joonsuk Huh
- Department of Chemistry
- Sungkyunkwan University
- Suwon-si
- Republic of Korea
- School of Advanced Institute of Nanotechnology
| | - Changsik Song
- Department of Chemistry
- Sungkyunkwan University
- Suwon-si
- Republic of Korea
| |
Collapse
|
4
|
Das D, Assaf KI, Nau WM. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front Chem 2019; 7:619. [PMID: 31572710 PMCID: PMC6753627 DOI: 10.3389/fchem.2019.00619] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023] Open
Abstract
The supramolecular chemistry of cucurbit[n]urils (CBn) has been rapidly developing to encompass diverse medicinal applications, including drug formulation and delivery, controlled drug release, and sensing for bioanalytical purposes. This is made possible by their unique recognition properties and very low cytotoxicity. In this review, we summarize the host-guest complexation of biologically important molecules with CBn, and highlight their implementation in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
5
|
Yin H, Chen L, Yang B, Bardelang D, Wang C, Lee SMY, Wang R. Fluorescence enhancement and pK a shift of a rho kinase inhibitor by a synthetic receptor. Org Biomol Chem 2018; 15:4336-4343. [PMID: 28470298 DOI: 10.1039/c7ob00547d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fasudil (FSD), a selective rho kinase (ROCK) inhibitor, was found to form 1 : 1 host-guest inclusion complexes with a synthetic macrocyclic receptor, cucurbit[7]uril (CB[7]), in aqueous solutions, as evidenced by 1H NMR, photoluminescence and UV-visible spectroscopic titrations, isothermal titration calorimetry (ITC) titration, and electrospray ionization (ESI) mass spectrometry, as well as density functional theory (DFT) molecular modeling. Upon encapsulation, whereas the UV-vis absorbance of FSD experienced a moderate decrease and bathochromic shift, the fluorescence intensity of FSD at 354 nm was dramatically enhanced for up to 69-fold at neutral pH, which could potentially be applied in fluorescent tracking of the drug delivery and release. More interestingly, the binding affinity (Ka = (4.28 ± 0.21) × 106 M-1), of FSD-CB[7] complexes under acidic conditions (pH = 2.0), is approximately three orders of magnitude higher than that (2.2∼6.6 × 103 M-1) under neutral pH conditions (pH = 7.0). Accordingly, UV-visible spectroscopic titration of the free and complexed FSD under various pH conditions has demonstrated that the encapsulation of FSD by CB[7] shifted the pKa of the isoquinoline-N upward from 3.05 to 5.96 (ΔpKa of 2.91). The significantly higher binding affinity of the complexes under acidic conditions may be applied in developing the "enteric" formulation of FSD. Furthermore, our in vitro study of the bioactivity of FSD in the absence and presence of CB[7] on a neural cell line, SH-SY5Y, showed that the complexation preserved the drug's pro-neurite efficacy. Thus this discovery may lead to a fluorescence-trackable, orally administered enteric formulation of rho kinase inhibitors that are stable under gastric conditions, without compromising bioactivity of the drugs.
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Mohanty B, Suvitha A, Venkataramanan NS. Piperine Encapsulation within Cucurbit[n]uril (n=6,7): A Combined Experimental and Density Functional Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201702846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Mohanty
- School of Chemical and Biotechnology (SCBT); SASTRA Deemed University; Thanjavur India
| | - Ambigapathy Suvitha
- School of Chemical and Biotechnology (SCBT); SASTRA Deemed University; Thanjavur India
| | - Natarajan Sathiyamoorthy Venkataramanan
- School of Chemical and Biotechnology (SCBT); SASTRA Deemed University; Thanjavur India
- Center for Computational Chemistry and Materials Science (CCCMS); SASTRA Deemed University; Thanjavur India
| |
Collapse
|
7
|
Host-guest complexes of local anesthetics with cucurbit[6]uril and para -sulphonatocalix[8]arene in the solid state. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li W, Yin H, Bardelang D, Xiao J, Zheng Y, Wang R. Supramolecular formulation of nitidine chloride can alleviate its hepatotoxicity and improve its anticancer activity. Food Chem Toxicol 2017; 109:923-929. [PMID: 28223120 DOI: 10.1016/j.fct.2017.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
|
9
|
Macartney DH. Cucurbit[n]uril Host-Guest Complexes of Acids, Photoacids, and Super Photoacids. Isr J Chem 2017. [DOI: 10.1002/ijch.201700096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Donal H. Macartney
- Department of Chemistry; Queen's University; 90 Bader Lane, Kingston ON Canada K7L3N6
| |
Collapse
|
10
|
Applications of Cucurbit[n]urils (n=7 or 8) in Pharmaceutical Sciences and Complexation of Biomolecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201700092] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Yang X, Zhao W, Wang Z, Huang Y, Lee SM, Tao Z, Wang R. Toxicity of hemimethyl-substituted cucurbit[7]uril. Food Chem Toxicol 2017; 108:510-518. [DOI: 10.1016/j.fct.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
|
12
|
Singharoy D, Mati SS, Ghosh S, Bhattacharya SC. CB7 as a drug vehicle and controlled release of drug through non ionic surfactant: Spectroscopic technique. Colloids Surf B Biointerfaces 2017; 160:84-91. [PMID: 28917153 DOI: 10.1016/j.colsurfb.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
A study of the comparative drug carrier properties of cucurbituril[7] (CB7) and β-cyclodextrin (β-CD) with a naphthalimide derivative, [2-(2-aminoethyl)-1H-benzo[deisoquinoline-1,3(2H)-dione] (NAP) and its release in aqueous solution using micellar environment, is the key research interest of this work. The profound changes in the different spectroscopic behavior have been attributed to the formation of a 1:1 inclusion complex for NAP:CB7 system. Several experimental outcomes clearly interpreted that CB7 has better drug carrier properties for NAP compared to β-CD. It has been also focused on the systematic release of NAP molecule from CB7 by using different ionic and non ionic surfactants. Before releasing the drug molecules from CB7 the interaction between NAP and the three different types of surfactants has also been investigated separately. The selectivity of drug carrier and releaser has been monitored, using different spectroscopic techniques like absorbance, fluorescence, fluorescence decay life time and 1H NMR spectroscopy. Besides, a theoretical approach has been followed for a proper geometrical optimized structure of NAP molecule and molecular arrangement of NAP:CB7 inclusion complex. From Density Functional Theory (DFT) it has been seen that NAP molecule is oriented as a t-bone like structure in its optimized form.
Collapse
Affiliation(s)
- Dipti Singharoy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Soumya Sundar Mati
- Government General Degree College, Keshiary, Paschim Medinipur, 721135, India
| | - Swadesh Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
13
|
Kuok KI, Li S, Wyman IW, Wang R. Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann N Y Acad Sci 2017; 1398:108-119. [PMID: 28692768 DOI: 10.1111/nyas.13376] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
Abstract
Cucurbit[7]uril (CB[7]), belonging to the cucurbit[n]uril family (CB[n], n = 5-8, 10, or 13-15), may form host-guest complexes with a variety of small molecules of biomedical interest. The physical and chemical properties of the complexed drugs are often improved as a result of this complexation, suggesting the potential application of CB[7] as a pharmaceutical excipient. This review has summarized the most recent research progress reported between 2011 and early 2017 regarding the biocompatibility of CB[7] and the influence of CB[7] on the stability, solubility, biouptake, and biological activities (including therapeutic efficacies and toxicities) of guest drug molecules. Through this systemic summary and analysis, we intend to stimulate further research efforts in this area and promote the use of CB[7] as an emerging pharmaceutical excipient to improve various properties of drug molecules (or active pharmaceutical ingredients).
Collapse
Affiliation(s)
- Kit Ieng Kuok
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ian W Wyman
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
14
|
Abstract
Abstract
Assembly of pyridine-2-aldoxime drug with cucurbit [6]uril (CB[6]) has been investigated by 1H-NMR and 2D-ROESY NMR, UV-Vis spectroscopy, FT-IR spectroscopy, surface tension and conductivity measurements in aqueous saline environment. The distinct cationic receptor feature and the cavity dimension of the CB[6] emphasize that the macro-cyclic host molecule remain as complex with the nerve stimulus drug molecule. The results obtained from surface tension and specific conductivity measurements suggest 1:1 inclusion complex formation between drug and CB[6]. The stability constant evaluated by UV-Vis spectroscopic approach is 2.21×105 M−1 at 298.15 K, which indicates that the complex is sufficiently stable at physiological temperature.
Collapse
|
15
|
Molecular Encapsulation of Histamine H₂-Receptor Antagonists by Cucurbit[7]Uril: An Experimental and Computational Study. Molecules 2016; 21:molecules21091178. [PMID: 27608003 PMCID: PMC6274153 DOI: 10.3390/molecules21091178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
The histamine H₂-receptor antagonists cimetidine, famotidine and nizatidine are individually encapsulated by macrocyclic cucurbit[7]uril (CB[7]), with binding affinities of 6.57 (±0.19) × 10³ M(-1), 1.30 (±0.27) × 10⁴ M(-1) and 1.05 (±0.33) × 10⁵ M(-1), respectively. These 1:1 host-guest inclusion complexes have been experimentally examined by ¹H-NMR, UV-visible spectroscopic titrations (including Job plots), electrospray ionization mass spectrometry (ESI-MS), and isothermal titration calorimetry (ITC), as well as theoretically by molecular dynamics (MD) computation. This study may provide important insights on the supramolecular formulation of H₂-receptor antagonist drugs for potentially enhanced stability and controlled release based on different binding strengths of these host-guest complexes.
Collapse
|
16
|
Li S, Chan JYW, Li Y, Bardelang D, Zheng J, Yew WW, Chan DPC, Lee SMY, Wang R. Complexation of clofazimine by macrocyclic cucurbit[7]uril reduced its cardiotoxicity without affecting the antimycobacterial efficacy. Org Biomol Chem 2016; 14:7563-9. [PMID: 27439674 DOI: 10.1039/c6ob01060a] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cucurbit[7]uril (CB[7]) has recently attracted increasing attention in pharmaceutical sciences due to its great potential in improving the physicochemical properties and bioactivity of drug molecules. Herein, we have investigated the influence of CB[7]'s complexation on the solubility, antimycobacterial activity, and cardiotoxicity of a model anti-tuberculosis drug, clofazimine (CFZ), that has poor water-solubility and inherent cardiotoxicity. In our study, CFZ was found to be complexed by CB[7], in a 1 : 1 binding mode with a relatively strong binding affinity (in the order of magnitude of 10(4)-10(5) M(-1)), as determined by the phase solubility method via HPLC-UV analysis and (1)H NMR titration, as well as UV-visible spectroscopic titration, and further confirmed by electrospray ionization mass spectrometry (ESI-MS). Upon complexation, the solubility of virtually insoluble CFZ was significantly increased, reaching a concentration of up to approximately 0.53-fold of the maximum solubility of CB[7]. The inherent cardiotoxicity of CFZ was dramatically reduced to almost nil in the presence of CB[7]. Importantly, on the other hand, such a supramolecular complexation of the drug did not compromise its therapeutic efficacy, as shown by the antimycobacterial activities examined against Mycobacterium smegmatis, demonstrating the significant potential of CB[7] as a functional pharmaceutical excipient.
Collapse
Affiliation(s)
- Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang X, Wang Z, Niu Y, Chen X, Lee SMY, Wang R. Influence of supramolecular encapsulation of camptothecin by cucurbit[7]uril: reduced toxicity and preserved anti-cancer activity. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00239k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation of camptothecin by cucurbit[7]uril significantly inhibited the systemic toxicities of the free drug, while maintaining its antitumor/anti-angiogenic activities.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| |
Collapse
|