1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Upgrading of Carbohydrates to the Biofuel Candidate 5-Ethoxymethylfurfural (EMF). INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/2316939] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5-Ethoxymethylfurfural (EMF), one of the significant platform molecular derivatives, is regarded as a promising biofuel and additive for diesel, owing to its high energy density (8.7 kWh·L−1). Several catalytic materials have been developed for the synthesis of EMF derived from different feedstocks under relatively mild reaction conditions. Although a great quantity of research has been conducted over the past decades, the unsatisfactory production selectivity mostly limited to the range 50%–70%, and the classic fructose used as the substrate restricted its application for fuel manufacture in large scale. To address these production improvements, this review pays attention to evaluate the activity of various catalysts (e.g., mineral salts, zeolites, heteropolyacid-based hybrids, sulfonic acid-functionalized materials, and ionic liquids), providing potential research directions for the design of novel catalysts for the achievement of further improved EMF yields.
Collapse
|
3
|
Lanzafame P, Barbera K, Papanikolaou G, Perathoner S, Centi G, Migliori M, Catizzone E, Giordano G. Comparison of H + and NH 4 + forms of zeolites as acid catalysts for HMF etherification. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Lanzafame P, Papanikolaou G, Perathoner S, Centi G, Migliori M, Catizzone E, Aloise A, Giordano G. Direct versus acetalization routes in the reaction network of catalytic HMF etherification. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02339a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The etherification of HMF (5-hydroxymethylfurfural) to EMF (5-(ethoxymethyl)furan-2-carbaldehyde) is studied over a series of MFI-type zeolite catalysts containing different heteroatoms (B, Fe, Al), aiming to understand the effect of different isomorph substitutions in the MFI framework on the reaction pathways of HMF conversion.
Collapse
Affiliation(s)
- P. Lanzafame
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - G. Papanikolaou
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - S. Perathoner
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - G. Centi
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - M. Migliori
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - E. Catizzone
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - A. Aloise
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - G. Giordano
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| |
Collapse
|
6
|
Serrano DP, Melero JA, Morales G, Iglesias J, Pizarro P. Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2017. [DOI: 10.1080/01614940.2017.1389109] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David P. Serrano
- Thermochemical Processes Unit, IMDEA Energy Institute, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Juan A. Melero
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Gabriel Morales
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Jose Iglesias
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Patricia Pizarro
- Thermochemical Processes Unit, IMDEA Energy Institute, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Móstoles, Madrid, Spain
| |
Collapse
|