1
|
Photo-induced energy and electron transfer in carboxylic acid functionalized bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA)-substituted A3B zinc porphyrins. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01958-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Zarrabi N, Holzer N, Bayard BJ, Seetharaman S, Boe BG, D’Souza F, Poddutoori PK. Fluorinated aluminum(III) porphyrins: Synthesis, spectroscopy, electrochemistry and photochemistry. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of fluorinated free-base porphyrins (H2TPPF[Formula: see text], [Formula: see text] = 0, 8, 12, 20, 24) and the corresponding aluminum(III) porphyrin (AlTPPF[Formula: see text]-Ph, [Formula: see text] = 0, 8, 12, 20, 24) derivatives have been synthesized and their spectroscopic, redox and optical properties were investigated. The absorption studies show that the spectral shapes of investigated porphyrins are sensitive to the degree of fluorination on the meso-phenyl units. Analogously, the fluorescence quantum yields and singlet-state lifetimes depend on the number of fluorine atoms, and decrease by increasing the number of fluorine atoms. The H2TPPF[Formula: see text] and AlTPPF[Formula: see text]-Ph ([Formula: see text] = 8, 12, 20, 24) derivatives exhibited lower fluorescence intensities compared to the H2TPP and AlTPP, respectively. However, the AlTPPF[Formula: see text]-Ph ([Formula: see text] = 0, 8, 12, 20, 24) derivatives yield relatively a strong fluorescence compared to the well-known ZnTPP. As predicted, the redox potentials are shifted to the more positive side by increasing the fluorine atoms. The Lewis acidity of AlTPPF[Formula: see text]-Ph was quantified by using the absorption and fluorescence titrations with the Lewis base [Formula: see text]-methylimidazole (Me-Im). The titration data suggests that the Lewis acidity of the Al center rises when increasing the number of fluorine atoms on the porphyrin. Together, the high fluorescence quantum yields, high-potentials, unique optical and redox properties suggest that the investigated porphyrins could be potential sensitizers to mimic various components of artificial photosynthetic systems for the production of solar fuels.
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Noah Holzer
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Brandon J. Bayard
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Benjamin G. Boe
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Prashanth K. Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Bichan N, Ovchenkova E, Ksenofontov A, Kudryakova N, Semeikin A, Lomova T. Self-organizing donor-acceptor assemblies of cobalt(II) porphyrin ligated with gold(III) porphyrin or fullero[60]pyrrolidine in liquid medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Covalent and non-covalent systems based on s-, p-, and d-metal macroheterocyclic complexes and fullerenes. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3081-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Zarrabi N, Poddutoori PK. Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Badgurjar D, Seetharaman S, D'Souza F, Chitta R. One-Photon Excitation Followed by a Three-Step Sequential Energy-Energy-Electron Transfer Leading to a Charge-Separated State in a Supramolecular Tetrad Featuring Benzothiazole-Boron-Dipyrromethene-Zinc Porphyrin-C 60. Chemistry 2020; 27:2184-2195. [PMID: 33107661 DOI: 10.1002/chem.202004262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Indexed: 12/25/2022]
Abstract
A panchromatic triad, consisting of benzothiazole (BTZ) and BF2 -chelated boron-dipyrromethene (BODIPY) moieties covalently linked to a zinc porphyrin (ZnP) core, has been synthesized and systematically characterized by using 1 H NMR spectroscopy, ESI-MS, UV-visible, steady-state fluorescence, electrochemical, and femtosecond transient absorption techniques. The absorption band of the triad, BTZ-BODIPY-ZnP, and dyads, BTZ-BODIPY and BODIPY-ZnP, along with the reference compounds BTZ-OMe, BODIPY-OMe, and ZnP-OMe exhibited characteristic bands corresponding to individual chromophores. Electrochemical measurements on BTZ-BODIPY-ZnP exhibited redox behavior similar to that of the reference compounds. Upon selective excitation of BTZ (≈290 nm) in the BTZ-BODIPY-ZnP triad, the fluorescence of the BTZ moiety is quenched, due to photoinduced energy transfer (PEnT) from 1 BTZ* to the BODIPY moiety, followed by quenching of the BODIPY emission due to sequential PEnT from the 1 BODIPY* moiety to ZnP, resulting in the appearance of the ZnP emission, indicating the occurrence of a two-step singlet-singlet energy transfer. Further, a supramolecular tetrad, BTZ-BODIPY-ZnP:ImC60 , was formed by axially coordinating the triad with imidazole-appended fulleropyrrolidine (ImC60 ), and parallel steady-state measurements displayed the diminished emission of ZnP, which clearly indicated the occurrence of photoinduced electron transfer (PET) from 1 ZnP* to ImC60 . Finally, femtosecond transient absorption spectral studies provided evidence for the sequential occurrence of PEnT and PET events, namely, 1 BTZ* -BODIPY-ZnP:ImC60 →BTZ-1 BODIPY* -ZnP:ImC60 →BTZ-BODIPY-1 ZnP* :ImC60 →BTZ-BODIPY-ZnP.+ :ImC60 .- in the supramolecular tetrad. The evaluated rate of energy transfer, kEnT , was found to be 3-5×1010 s-1 , which was slightly faster than that observed in the case of BODIPY-ZnP and BTZ-BODIPY-ZnP, lacking the coordinated ImC60 . The rate constants for charge separation and recombination, kCS and kCR , respectively, calculated by monitoring the rise and decay of C60 .- were found to be 5.5×1010 and 4.4×108 s-1 , respectively, for the BODIPY-ZnP:ImC60 triad, and 3.1×1010 and 4.9×108 s-1 , respectively, for the BTZ-BODIPY-ZnP:ImC60 tetrad. Initial excitation of the tetrad, promoting two-step energy transfer and a final electron-transfer event, has been successfully demonstrated in the present study.
Collapse
Affiliation(s)
- Deepak Badgurjar
- Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan, 305817, India
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Raghu Chitta
- Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan, 305817, India.,Department of Chemistry, National Institute of Technology-Warangal, Hanamkonda, Warangal, 506004, India
| |
Collapse
|
7
|
Martín-Gomis L, Seetharaman S, Herrero D, Karr PA, Fernández-Lázaro F, D'Souza F, Sastre-Santos Á. Distance-Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanine-Fullerene Conjugates. Chemphyschem 2020; 21:2254-2262. [PMID: 33448590 DOI: 10.1002/cphc.202000578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The effect of donor-acceptor distance in controlling the rate of electron transfer in axially linked silicon phthalocyanine-C60 dyads has been investigated. For this, two C60-SiPc-C60 dyads, 1 and 2, varying in their donor-acceptor distance, have been newly synthesized and characterized. In the case of C60-SiPc-C60 1 where the SiPc and C60 are separated by a phenyl spacer, faster electron transfer was observed with kcs equal to 2.7×109 s-1 in benzonitrile. However, in the case of C60-SiPc-C60 2, where SiPc and C60 are separated by a biphenyl spacer, a slower electron transfer rate constant, kcs=9.1×108 s-1, was recorded. The addition of an extra phenyl spacer in 2 increased the donor-acceptor distance by ∼4.3 Å, and consequently, slowed down the electron transfer rate constant by a factor of ∼3.7. The charge separated state lasted over 3 ns, monitoring time window of our femtosecond transient spectrometer. Complimentary nanosecond transient absorption studies revealed formation of 3SiPc* as the end product and suggested the final lifetime of the charge separated state to be in the 3-20 ns range. Energy level diagrams established to comprehend these mechanistic details indicated that the comparatively high-energy SiPc.+-C60 .- charge separated states (1.57 eV) populated the low-lying 3SiPc* (1.26 eV) prior returning to the ground state.
Collapse
Affiliation(s)
- Luis Martín-Gomis
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - David Herrero
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska 68787, USA
| | - Fernando Fernández-Lázaro
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Ángela Sastre-Santos
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| |
Collapse
|
8
|
Zarrabi N, Seetharaman S, Chaudhuri S, Holzer N, Batista VS, van der Est A, D'Souza F, Poddutoori PK. Decelerating Charge Recombination Using Fluorinated Porphyrins in N,N-Bis(3,4,5-trimethoxyphenyl)aniline-Aluminum(III) Porphyrin-Fullerene Reaction Center Models. J Am Chem Soc 2020; 142:10008-10024. [PMID: 32343561 DOI: 10.1021/jacs.0c01574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In supramolecular reaction center models, the lifetime of the charge-separated state depends on many factors. However, little attention has been paid to the redox potential of the species that lie between the donor and acceptor in the final charge separated state. Here, we report on a series of self-assembled aluminum porphyrin-based triads that provide a unique opportunity to study the influence of the porphyrin redox potential independently of other factors. The triads, BTMPA-Im→AlPorFn-Ph-C60 (n = 0, 3, 5), were constructed by linking the fullerene (C60) and bis(3,4,5-trimethoxyphenyl)aniline (BTMPA) to the aluminum(III) porphyrin. The porphyrin (AlPor, AlPorF3, or AlPorF5) redox potentials are tuned by the substitution of phenyl (Ph), 3,4,5-trifluorophenyl (PhF3), or 2,3,4,5,6-pentafluorophenyl (PhF5) groups in its meso positions. The C60 and BTMPA units are bound axially to opposite faces of the porphyrin plane via covalent and coordination bonds, respectively. Excitation of all of the triads results in sequential electron transfer that generates the identical final charge separated state, BTMPA•+-Im→AlPorFn-Ph-C60•-, which lies energetically 1.50 eV above the ground state. Despite the fact that the radical pair is identical in all of the triads, remarkably, the lifetime of the BTMPA•+-Im→AlPorFn-Ph-C60•- radical pair was found to be very different in each of them, that is, 1240, 740, and 56 ns for BTMPA-Im→AlPorF5-Ph-C60, BTMPA-Im→AlPorF3-Ph-C60, and BTMPA-Im→AlPor-Ph-C60, respectively. These results clearly suggest that the charge recombination is an activated process that depends on the midpoint potential of the central aluminum(III) porphyrin (AlPorFn).
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Noah Holzer
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, United States
| | - Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
9
|
Arellano LM, Gobeze HB, Gómez-Escalonilla MJ, Fierro JLG, D'Souza F, Langa F. Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. NANOSCALE 2020; 12:9890-9898. [PMID: 32347282 DOI: 10.1039/d0nr02136a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability of a triplet photosensitizer to generate long-lived charge separated states, in contrast to traditionally used singlet photosensitizers, in covalently functionalized single-walled carbon nanotube hybrids has been investigated. Enriched single-walled carbon nanotubes with two diameters, namely (6,5) and (7,6), were covalently modified to carry a charge-stabilizing triplet photosensitizer derived from a palladium porphyrin. The nanohybrids were fully characterized and the presence of intramolecular interactions between the porphyrin and nanotubes was established from various spectroscopic, imaging, electrochemical and thermochemical studies. Photoluminescence of palladium porphyrin was found to be quantitatively quenched in the presence of covalently appended SWCNTs and this quenching is due to excited state charge separation and has been established by femtosecond transient absorption studies. Owing to the presence of the triplet photosensitizer, the charge separated states lasted over 3 ns, i.e., much longer than those reported earlier for singlet photosensitizer-derived nanotube hybrids. The nanohybrids also exhibited efficient photocatalytic behavior in experiments involving electron pooling of one-electron reduced methyl viologen in the presence of a sacrificial electron donor. Higher yields of photoproducts were achieved from the present donor-acceptor nanohybrids when compared with those of singlet photosensitizer-derived nanohybrids, more so for (6,5) nanotube derived hybrids compared to (7,6) nanotube derived hybrids. The present findings highlight the importance of triplet photosensitizer derived nanohybrids in artificial photosynthesis of charge separation and photocatalytic applicatons.
Collapse
Affiliation(s)
- Luis M Arellano
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), 45071-Toledo, Spain.
| | - Habtom B Gobeze
- Chemistry and Materials Science and Engineering, University of North Texas, 76203-5017 Denton, TX, USA. Francis.D'
| | - María J Gómez-Escalonilla
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), 45071-Toledo, Spain.
| | - José Luis G Fierro
- Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Francis D'Souza
- Chemistry and Materials Science and Engineering, University of North Texas, 76203-5017 Denton, TX, USA. Francis.D'
| | - Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), 45071-Toledo, Spain.
| |
Collapse
|
10
|
Im SW, Ha H, Yang W, Jang JH, Kang B, Seo DH, Seo J, Nam KT. Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems. PHOTOSYNTHESIS RESEARCH 2020; 143:205-220. [PMID: 31643017 DOI: 10.1007/s11120-019-00682-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The processes of biological photosynthesis provide inspiration and valuable lessons for artificial energy collection, transfer, and conversion systems. The extraordinary efficiency of each sequential process of light to biomass conversion originates from the unique architecture and mechanism of photosynthetic proteins. Near 100% quantum efficiency of energy transfer in biological photosystems is achieved by the chlorophyll assemblies in antenna complexes, which also exhibit a significant degree of light polarization. The three-dimensional chiral assembly of chlorophylls is an optimized biological architecture that enables maximum energy transfer efficiency with precisely designed coupling between chlorophylls. In this review, we summarize the key lessons from the photosynthetic processes in biological photosystems, and move our focus to energy transfer mechanisms and the chiral structure of the chlorophyll assembly. Then, we introduce recent approaches and possible implications to realize the biological energy transfer processes on bioinspired scaffold-based artificial antenna systems.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Heonjin Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Woojin Yang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jun Ho Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Boyeong Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Da Hye Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Krug M, Stangel C, Zieleniewska A, Clark T, Torres T, Coutsolelos AG, Guldi DM. Combining Zinc Phthalocyanines, Oligo(p-Phenylenevinylenes), and Fullerenes to Impact Reorganization Energies and Attenuation Factors. Chemphyschem 2019; 20:2806-2815. [PMID: 31471925 DOI: 10.1002/cphc.201900780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 01/11/2023]
Abstract
A study on electron transfer in three electron donor-acceptor complexes is reported. These architectures consist of a zinc phthalocyanine (ZnPc) as the excited-state electron donor and a fullerene (C60 ) as the ground-state electron acceptor. These complexes are brought together by axial coordination at ZnPc. The key variable in our design is the length of the molecular spacer, namely, oligo-p-phenylenevinylenes. The lack of appreciable ground-state interactions is in accordance with strong excited-state interactions, as inferred from the quenching of ZnPc centered fluorescence and the presence of a short-lived fluorescence component. Full-fledged femtosecond and nanosecond transient absorption spectroscopy assays corroborated that the ZnPc ⋅ + -C60 ⋅ - charge-separated state formation comes at the expense of excited-state interactions following ZnPc photoexcitation. At a first glance, the ZnPc ⋅ + -C60 ⋅ - charge-separated state lifetime increased from 0.4 to 86.6 ns as the electron donor-acceptor separation increased from 8.8 to 29.1 Å. A closer look at the kinetics revealed that the changes in charge-separated state lifetime are tied to a decrease in the electronic coupling element from 132 to 1.2 cm-1 , an increase in the reorganization energy of charge transfer from 0.43 to 0.63 eV, and a large attenuation factor of 0.27 Å-1 .
Collapse
Affiliation(s)
- Marcel Krug
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nuernberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Christina Stangel
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 71003, Heraklion, Crete, Greece.,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Anna Zieleniewska
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nuernberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nuernberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Tomás Torres
- IMDEA-Nanociencia, C/Faraday, 9, Cantoblanco, 28049 -, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Athanassios G Coutsolelos
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 71003, Heraklion, Crete, Greece
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nuernberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Oveisi AR, Karimi P, Delarami HS, Daliran S, Khorramabadi-Zad A, Khajeh M, Sanchooli E, Ghaffari-Moghaddam M. New porphyrins: synthesis, characterization, and computational studies. Mol Divers 2019; 24:335-344. [PMID: 31062142 DOI: 10.1007/s11030-019-09955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
New trans-A2B2-porphyrins substituted at phenyl positions were synthesized from 4-methylphthalic acid as a starting material through sequential multistep reactions. These macrocycles were characterized by 1H NMR, 13C NMR, 19F NMR, 1H-1H COSY NMR, and MALDI-TOF mass spectrometry. Computational studies were performed on the porphyrins to investigate various factors such as structural features, electronic energy, energy gaps, and aromaticity. Energy band gap values of these compounds especially N-hydroxyphthalimide-functionalized porphyrins were small that makes them as good candidates for solar cell systems and photocatalysis. Relationships between electronic energies and aromaticity of the compounds were then investigated. The data indicated that the aromaticity features at the center of two series of these compounds (fluorinated and non-fluorinated porphyrins) were in the opposite manner.
Collapse
Affiliation(s)
- Ali Reza Oveisi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Saba Daliran
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | | | - Mostafa Khajeh
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Esmael Sanchooli
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | |
Collapse
|
13
|
Yi XQ, He YF, Cao YS, Shen WX, Lv YY. Porphyrinic Probe for Fluorescence "Turn-On" Monitoring of Cu + in Aqueous Buffer and Mitochondria. ACS Sens 2019; 4:856-864. [PMID: 30868875 DOI: 10.1021/acssensors.8b01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc(II) porphyrin derivative (ZPSN) was designed and synthesized, and this probe exhibited rapid, selective and reversible binding to Cu+ for fluorescence monitoring in pure aqueous buffer. The detection mechanism is based on Cu+-activated disruption of axial coordination between the pyridyl ligand and the zinc center, which changes the molecular geometry and inhibits intramolecular electron transfer (ET), leading to fluorescence enhancement of the probe. The proposed sensing mechanism was supported by UV-vis spectroscopy/fluorescence spectral titration, NMR spectroscopy, mass spectrometry, and time-resolved fluorescence decay studies. The dissociation constant was calculated to be 6.53 × 10-11 M. CLSM analysis strongly suggested that ZPSN could penetrate live cells and successfully visualize Cu+ in mitochondria. This strategy may establish a design and offer a potential building block for construction of other metal sensors based on a similar mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Yi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
- College of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Yuan-Fan He
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yu-Sheng Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Wang-Xing Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| |
Collapse
|
14
|
Zarrabi N, Lim GN, Bayard BJ, D'Souza F, Poddutoori PK. Surface anchored self-assembled reaction centre mimics as photoanodes consisting of a secondary electron donor, aluminium(iii) porphyrin and TiO2 semiconductor. Phys Chem Chem Phys 2019; 21:19612-19622. [DOI: 10.1039/c9cp03400e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vertically assembled photoanodes, consisting of aluminum(iii) porphyrin, an electron donor, and semiconductor TiO2, have been fabricated and their photophysical properties investigated.
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry
- University of Minnesota Duluth
- Duluth
- USA
| | - Gary N. Lim
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Brandon J. Bayard
- Department of Chemistry & Biochemistry
- University of Minnesota Duluth
- Duluth
- USA
| | | | | |
Collapse
|
15
|
Seetharaman S, Follana-Berná J, Martín-Gomis L, Charalambidis G, Trapali A, Karr PA, Coutsolelos AG, Fernández-Lázaro F, Sastre-Santos Á, D'Souza F. Sequential, Ultrafast Energy Transfer and Electron Transfer in a Fused Zinc Phthalocyanine-free-base Porphyrin-C 60 Supramolecular Triad. Chemphyschem 2018; 20:163-172. [PMID: 30353624 DOI: 10.1002/cphc.201800847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/11/2022]
Abstract
A supramolecular triad composed of a fused zinc phthalocyanine-free-base porphyrin dyad (ZnPc-H2 P) coordinated to phenylimidazole functionalized C60 via metal-ligand axial coordination was assembled, as a photosynthetic antenna-reaction centre mimic. The process of self-assembly resulting into the formation of C60 Im:ZnPc-H2 P supramolecular triad was probed by proton NMR, UV-Visible and fluorescence experiments at ambient temperature. The geometry and electronic structures were deduced from DFT calculations performed at the B3LYP/6-31G(dp) level. Electrochemical studies revealed ZnPc to be a better electron donor compared to H2 P, and C60 to be the terminal electron acceptor. Fluorescence studies of the ZnPc-H2 P dyad revealed excitation energy transfer from 1 H2 P* to ZnPc within the fused dyad and was confirmed by femtosecond transient absorption studies. Similar to that reported earlier for the fused ZnPc-ZnP dyad, the energy transfer rate constant, kENT was in the order of 1012 s-1 in the ZnPc-H2 P dyad indicating an efficient process as a consequence of direct fusion of the two π-systems. In the presence of C60 Im bound to ZnPc, photoinduced electron transfer leading to H2 P-ZnPc.+ :ImC60 .- charge separated state was observed either by selective excitation of ZnPc or H2 P. The latter excitation involved an energy transfer followed by electron transfer mechanism. Nanosecond transient absorption studies revealed that the lifetime of charge separated state persists for about 120 ns indicating charge stabilization in the triad.
Collapse
Affiliation(s)
- Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Jorge Follana-Berná
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Luis Martín-Gomis
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Georgios Charalambidis
- Departement of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Adelais Trapali
- Departement of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Athanassios G Coutsolelos
- Departement of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
16
|
Zarrabi N, Obondi CO, Lim GN, Seetharaman S, Boe BG, D'Souza F, Poddutoori PK. Charge-separation in panchromatic, vertically positioned bis(donor styryl)BODIPY-aluminum(iii) porphyrin-fullerene supramolecular triads. NANOSCALE 2018; 10:20723-20739. [PMID: 30398274 DOI: 10.1039/c8nr06649c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three, broad band capturing, vertically aligned supramolecular triads, R2-BDP-AlPorF3←Im-C60 [R = H, styryl (C2H2-Ph), C2H2-TPA (TPA = triphenylamine); ← = coordinate bond], have been constructed using BODIPY derivative (BDP, BDP-Ph2 or BDP-TPA2), 5,10,15,20-tetrakis(3,4,5-trifluorophenyl)aluminum(iii) porphyrin (AlPorF3) and fullerene (C60) entities. The C60 and BDP units are bound to the Al center on the opposite faces of the porphyrin: the BDP derivative through a covalent axial bond using a benzoate spacer and the C60 through a coordination bond via an appended imidazole. Owing to the bis-styryl functionality on BDP, the constructed dyads and triads exhibited panchromatic light capture. Due to the diverse absorption and redox properties of the selected entities, it was possible to demonstrate excitation wavelength dependent photochemical events. In the case of the BDP-AlPorF3 dyad, selective excitation of BDP resulted in singlet-singlet energy transfer to AlPorF3 (kEnT = 1.0 × 1010 s-1). On the other hand, excitation of the AlPorF3 entity in the BDP-AlPorF3←Im-C60 triad revealed charge separation leading to the BDP-(AlPorF3)˙+-(C60)˙- charge separated state (kCS = 2.43 × 109 s-1). In the case of the Ph2-BDP-AlPorF3 dyad, energy transfer from 1AlPorF3* to 1(Ph2-BDP)* was witnessed (kEnT = 1.0 × 1010 s-1); however, upon assembling the supramolecular triad, (Ph2-BDP)-AlPorF3←Im-C60, electron transfer from 1AlPorF3* to C60 (kCS = 3.35 × 109 s-1), followed by hole shift (kHS = 1.00 × 109 s-1) to Ph2-BDP, was witnessed. Finally, in the case of the TPA2-BDP-AlPorF3←Im-C60 triad, only electron transfer leading to the (TPA2-BDP)˙+-AlPorF3←Im-(C60)˙- charge separated state, and no energy transfer, was observed. The facile oxidation of Ph2-BDP and TPA2-BDP compared to AlPorF3 in the latter two triads facilitated charge separation through either an electron migration or hole transfer mechanism depending on the initial excitation. The charge-separated states in these triads persisted for about 20 ns.
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Poddutoori PK, Kandrashkin YE, Obondi CO, D'Souza F, van der Est A. Triplet electron transfer and spin polarization in a palladium porphyrin–fullerene conjugate. Phys Chem Chem Phys 2018; 20:28223-28231. [DOI: 10.1039/c8cp04937h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transient electron paramagnetic resonance (TREPR) spectroscopy is used to investigate the pathway and dynamics of electron transfer in a palladium porphyrin–fullerene donor–acceptor conjugate.
Collapse
Affiliation(s)
| | - Yuri E. Kandrashkin
- Zavoisky Physical-Technical Institute
- FRC Kazan Scientific Center of RAS
- Kazan 420029
- Russian Federation
| | | | | | | |
Collapse
|
18
|
Achary BS, Ramya AR, Nanubolu JB, Seetharaman S, Lim GN, Jang Y, D’Souza F, Giribabu L. Axially substituted phosphorous(v) corrole with polycyclic aromatic hydrocarbons: syntheses, X-ray structures, and photoinduced energy and electron transfer studies. NEW J CHEM 2018. [DOI: 10.1039/c7nj04363e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Excited state energy and electron transfer processes in naphthalene and pyrene appended phosphorous(v) corroles.
Collapse
Affiliation(s)
- B. Shivaprasad Achary
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - A. R. Ramya
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | | | - Gary N. Lim
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Youngwoo Jang
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | | | - Lingamallu Giribabu
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| |
Collapse
|
19
|
Bagaki A, Gobeze HB, Charalambidis G, Charisiadis A, Stangel C, Nikolaou V, Stergiou A, Tagmatarchis N, D’Souza F, Coutsolelos AG. Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorg Chem 2017; 56:10268-10280. [DOI: 10.1021/acs.inorgchem.7b01050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthi Bagaki
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Habtom B. Gobeze
- Department of Chemistry, University of North Texas, 1155 Union
Circle, #305070, Denton, Texas 76203-5017, United States
| | - Georgios Charalambidis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Asterios Charisiadis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Christina Stangel
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Contantinou Avenue, Athens 11635, Greece
| | - Vasilis Nikolaou
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Contantinou Avenue, Athens 11635, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Contantinou Avenue, Athens 11635, Greece
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, 1155 Union
Circle, #305070, Denton, Texas 76203-5017, United States
| | - Athanassios G. Coutsolelos
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| |
Collapse
|
20
|
Amati A, Cavigli P, Kahnt A, Indelli MT, Iengo E. Self-Assembled Ruthenium(II)Porphyrin-Aluminium(III)Porphyrin-Fullerene Triad for Long-Lived Photoinduced Charge Separation. J Phys Chem A 2017; 121:4242-4252. [PMID: 28498660 DOI: 10.1021/acs.jpca.7b02973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A very efficient metal-mediated strategy led, in a single step, to a quantitative construction of a new three-component multichromophoric system containing one fullerene monoadduct, one aluminium(III) monopyridylporphyrin, and one ruthenium(II) tetraphenylporphyrin. The Al(III) monopyridylporphyrin component plays the pivotal role in directing the correct self-assembly process and behaves as the antenna unit for the photoinduced processes of interest. A detailed study of the photophysical behavior of the triad was carried out in different solvents (CH2Cl2, THF, and toluene) by stationary and time-resolved emission and absorption spectroscopy in the pico- and nanosecond time domains. Following excitation of the Al-porphyrin, the strong fluorescence typical of this unit was strongly quenched. The time-resolved absorption experiments provided evidence for the occurrence of stepwise photoinduced electron and hole transfer processes, leading to a charge-separated state with reduced fullerene acceptor and oxidized ruthenium porphyrin donor. The time constant values measured in CH2Cl2 for the formation of charge-separated state Ru-Al+-C60- (10 ps), the charge shift process (Ru-Al+-C60- → Ru+-Al-C60-), where a hole is transferred from Al-based to Ru-based unit (75 ps), and the charge recombination process to ground state (>5 ns), can be rationalized within the Marcus theory. Although the charge-separating performance of this triad is not outstanding, this study demonstrates that, using the self-assembling strategy, improvements can be obtained by appropriate chemical modifications of the individual molecular components.
Collapse
Affiliation(s)
- Agnese Amati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Cavigli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Axel Kahnt
- Lehrstuhl für Physikalische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstraße 3, 91058 Erlangen, Germany
| | - Maria Teresa Indelli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara , Via Fossato di Mortara 17, 44121 Ferrara, Italy.,Centro Interuniversitario per la Conversione Chimica dell'Energia Solare, sezione di Ferrara , via L. Borsari 46, 44121 Ferrara, Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
21
|
Martín‐Gomis L, Peralta‐Ruiz F, Thomas MB, Fernández‐Lázaro F, D'Souza F, Sastre‐Santos Á. Multichromophoric Perylenediimide–Silicon Phthalocyanine–C
60
System as an Artificial Photosynthetic Analogue. Chemistry 2017; 23:3863-3874. [DOI: 10.1002/chem.201603741] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/12/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Luis Martín‐Gomis
- División de Química Orgánica, Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03203 Elche Spain
| | - Francisco Peralta‐Ruiz
- División de Química Orgánica, Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03203 Elche Spain
| | - Michael B. Thomas
- Department of Chemistry University of North Texas at Denton 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Fernando Fernández‐Lázaro
- División de Química Orgánica, Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03203 Elche Spain
| | - Francis D'Souza
- Department of Chemistry University of North Texas at Denton 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Ángela Sastre‐Santos
- División de Química Orgánica, Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03203 Elche Spain
| |
Collapse
|
22
|
Waruna Jinadasa RG, Thomas MB, Hu Y, D'Souza F, Wang H. Investigation of the push–pull effects on β-functionalized benzoporphyrins bearing an ethynylphenyl bridge. Phys Chem Chem Phys 2017; 19:13182-13188. [DOI: 10.1039/c7cp00024c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Functionalized opp-dibenzoporphyrins show significant push–pull effects.
Collapse
Affiliation(s)
| | | | - Yi Hu
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | | | - Hong Wang
- Department of Chemistry
- University of North Texas
- Denton
- USA
| |
Collapse
|
23
|
Gobeze HB, Kumar S, D'Souza F, Ravikanth M. Strongly Coupled Oxasmaragdyrin-BF2Chelated Dipyrrin Dyads: Syntheses, X-ray Structure, Ground- and Excited-State Charge-Transfer Interactions. Chemistry 2016; 23:1546-1556. [DOI: 10.1002/chem.201604362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Habtom B. Gobeze
- Department of Chemistry; University of North Texas; 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Sunit Kumar
- Indian Institute of Technology, Powa; Mumbai 400076 India
| | - Francis D'Souza
- Department of Chemistry; University of North Texas; 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | | |
Collapse
|
24
|
Jana A, Ishida M, Park JS, Bähring S, Jeppesen JO, Sessler JL. Tetrathiafulvalene- (TTF-) Derived Oligopyrrolic Macrocycles. Chem Rev 2016; 117:2641-2710. [DOI: 10.1021/acs.chemrev.6b00375] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atanu Jana
- Department
of Chemistry, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute
for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, China
| | - Masatoshi Ishida
- Department
of Chemistry and Biochemistry, Graduate School of Engineering and
Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Jung Su Park
- Department
of Chemistry, Sookmyung Womens’s University, Seoul 140-742, South Korea
| | - Steffen Bähring
- Department
of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jan O. Jeppesen
- Department
of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
- Institute
for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
25
|
Barthelmes K, Winter A, Schubert US. Dyads and Triads Based on Phenothiazine, Bis(terpyridine)ruthenium(II) Complexes, and Fullerene. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
26
|
Ito O. Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns. CHEM REC 2016; 17:326-362. [DOI: 10.1002/tcr.201600066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Osamu Ito
- Kita-Nakayama 2; Izumi-Ku Sendai 981-3215 Japan
| |
Collapse
|
27
|
Poddutoori PK, Kandrashkin YE, Est AVD. A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The stabilization of light-induced charge separation in two axially bound triads based on aluminum(III) porphyrin (AlPor) are investigated using the electron spin polarization patterns of the final radical pair state. In the triads, TTF-(Ph)n-py-AlPor-AQ, (n=0, 1) anthraquinone (AQ) is attached covalently to the Al(III) center, while the donor tetrathiafulvalene (TTF) coordinates to Al(III) on the opposite face of the porphyrin ring via the appended pyridine (py). The dyad AlPor-AQ has been studied previously (M. Kanematsu, P. Naumov, T. Kojima, S. Fukuzumi, Chem. Eur. J. 17 (2011) 12372.) and shown to undergo fast light-induced charge separation and triplet recombination. Here, it is shown that by coordinating pyridine-appended TTF to the porphyrin, the charge separation can be stabilized. The spin polarized transient EPR spectra of the state TTF·+AQ·− can be observed in both the glass phase and in liquid solution and show that the state is formed from a singlet precursor on a timescale of less than ~0.5 ns. Using structural models to fix the geometry of the radical pair and the strength of the dipolar coupling, it is possible to determine the sign and approximate magnitude of the exchange coupling between TTF·+ and AQ·−. In contrast, other similar triads, which display relatively large ferromagnetic coupling, the exchange coupling is found to be small and antiferromagnetic. This difference can be rationalized as a result of differences in the structure of the bridge between the porphyrin and the acceptor.
Collapse
Affiliation(s)
- Prashanth K. Poddutoori
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Yuri E. Kandrashkin
- Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, Russian Federation
| | - Art van der Est
- Departments of Chemistry and Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
28
|
KC CB, D'Souza F. Design and photochemical study of supramolecular donor–acceptor systems assembled via metal–ligand axial coordination. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Obondi CO, Lim GN, Churchill B, Poddutoori PK, van der Est A, D'Souza F. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates. NANOSCALE 2016; 8:8333-8344. [PMID: 27043704 DOI: 10.1039/c6nr01083k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (∼13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state.
Collapse
Affiliation(s)
- Christopher O Obondi
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Gary N Lim
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Brittani Churchill
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| | - Prashanth K Poddutoori
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada. and Freiburg Institute of Advanced Studies (FRIAS) Albert-Ludwigs-Universität Freiburg, Albertstr. 19, D-19104 Freiburg, Germany
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
| |
Collapse
|
30
|
Jain K, Duvva N, Badgurjar D, Giribabu L, Chitta R. Synthesis and spectroscopic studies of axially bound tetra(phenothiazinyl)/tetra(bis(4′-tert-butylbiphenyl-4-yl)aniline)-zinc(II)porphyrin-fullero[C60 & C70]pyrrolidine donor–acceptor triads. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Sudhakar K, Gokulnath S, Giribabu L, Lim GN, Trâm T, D'Souza F. Ultrafast Photoinduced Charge Separation Leading to High-Energy Radical Ion-Pairs in Directly Linked Corrole-C60and Triphenylamine-Corrole-C60Donor-Acceptor Conjugates. Chem Asian J 2015; 10:2708-19. [DOI: 10.1002/asia.201500679] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Kolanu Sudhakar
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Habsiguda Hyderabad 500007, Telangana India
| | - Sabapathi Gokulnath
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Habsiguda Hyderabad 500007, Telangana India
| | - Lingamallu Giribabu
- Inorganic & Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Habsiguda Hyderabad 500007, Telangana India
| | - Gary N. Lim
- Department of Chemistry; University of North Texas; 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Tạ Trâm
- Department of Chemistry; University of North Texas; 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Francis D'Souza
- Department of Chemistry; University of North Texas; 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
32
|
Poddutoori PK, Bregles LP, Lim GN, Boland P, Kerr RG, D’Souza F. Modulation of Energy Transfer into Sequential Electron Transfer upon Axial Coordination of Tetrathiafulvalene in an Aluminum(III) Porphyrin–Free-Base Porphyrin Dyad. Inorg Chem 2015; 54:8482-94. [DOI: 10.1021/acs.inorgchem.5b01190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prashanth K. Poddutoori
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Lucas P. Bregles
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Gary N. Lim
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Patricia Boland
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Russ G. Kerr
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
33
|
Poddutoori PK, Lim GN, Vassiliev S, D'Souza F. Ultrafast charge separation and charge stabilization in axially linked ‘tetrathiafulvalene–aluminum(iii) porphyrin–gold(iii) porphyrin’ reaction center mimics. Phys Chem Chem Phys 2015; 17:26346-58. [DOI: 10.1039/c5cp04818d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential electron transfer leading to charge stabilization in newly synthesized vertically aligned ‘tetrathiafulvalene–aluminum(iii) porphyrin–gold(iii) porphyrin’ supramolecular triads is reported.
Collapse
Affiliation(s)
| | - Gary N. Lim
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Serguei Vassiliev
- Department of Biological Sciences
- Brock University
- St. Catharines
- Canada
| | | |
Collapse
|