1
|
Hashimoto S, Uwada T. Melting of a single ice microparticle on exposure to focused near-IR laser beam to yield a supercooled water droplet. Phys Chem Chem Phys 2024; 26:1967-1976. [PMID: 38116623 DOI: 10.1039/d3cp05306g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We observed for the first time that a single ice microparticle supported on a substrate melted photothermally to form a supercooled water droplet on exposure to tightly focused illumination with a 1064-nm laser beam that generated a point heat source. In situ Raman micro-spectroscopy clearly showed the formation of liquid water at the expense of ice. The observation of this melting is only possible when the experiment is performed with micrometer-sized ice particles. A previous attempt to melt millimeter-sized ice through photothermal heating of gold nanoaggregates fell short of expectations because only vapor formation, rather than liquid water formation, has been postulated. Our observation is significant because thermal confinement in a microscale compartment using a water-air interface as a heat-insulated wall can achieve particle temperatures above the melting point of water, whereas, in an unlimited space of ice, heat transfer from the heating center to the surroundings causes steep temperature decays, resulting in limited temperature increase.
Collapse
Affiliation(s)
- Shuichi Hashimoto
- Advanced Engineering Course, NIT Gunma College, 580 Toriba-machi, Maebashi, Guma 371-8530, Japan.
| | - Takayuki Uwada
- Department of Chemistry, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
2
|
Agiotis L, De Lille VT, Meunier M. Influence of photothermal and plasma-mediated nano-processes on fluence thresholds for ultrafast laser-induced cavitation around gold nanoparticles. NANOSCALE ADVANCES 2023; 5:6887-6896. [PMID: 38059026 PMCID: PMC10696957 DOI: 10.1039/d3na00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
Laser fluence thresholds of ultrafast excitation of vapor bubbles around gold nanoparticles are determined experimentally. An optical scattering technique of limited minimum bubble size resolution is employed and analyzed for that purpose. Measurements were performed for spherical gold nanoparticles of varying sizes (40-200 nm) and for laser pulses of varying pulse width (55 fs to 4.3 ps) to estimate the limits where the evaluated thresholds are attributed to either plasma-mediated or photothermal cavitation. Furthermore, thresholds were obtained by double 55 fs pulsed excitation (varying delay 0.0-4.3 ps), providing insights into the dynamics of the excited plasma. A relationship is established between particle properties, (size, near-field amplification factor, and absorption efficiency) and the crossover pulse width of the transition from plasma-mediated to photothermal cavitation. Further, by comparing theory and experiments, we examine the approximative optical breakdown density of ∼10-21 cm-3 at a distance of 1-2 nm from the particle surface as a criterion of plasma-mediated cavitation around gold nanoparticles in analogy to the spinodal criterion for photothermal cavitation. For a given pulse width, the breakdown density appears to be nearly size-independent, establishing the aforesaid criterion applicable. However, a small pulse width dependence of the breakdown density is still observed. Based on these criteria, a comparison is further provided between theoretical thresholds of cavitation and the ones of detectable bubbles. An increasing discrepancy is observed between them with decreasing size for the case of photothermal cavitation. For plasma-mediated cavitation, the latter discrepancy is seemingly smaller, presumably due to the highly nonlinear nature of the process.
Collapse
Affiliation(s)
- Leonidas Agiotis
- Department of Engineering Physics, Polytechnique Montréal Montreal QC H3C 3A7 Canada
| | - Vi Tching De Lille
- Department of Engineering Physics, Polytechnique Montréal Montreal QC H3C 3A7 Canada
| | - Michel Meunier
- Department of Engineering Physics, Polytechnique Montréal Montreal QC H3C 3A7 Canada
| |
Collapse
|
3
|
Egan GC, Lau EY, Schwegler E. Multiframe Imaging of Micron and Nanoscale Bubble Dynamics. NANO LETTERS 2022; 22:1053-1058. [PMID: 35044188 DOI: 10.1021/acs.nanolett.1c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report on the direct sequential imaging of laser-induced cavitation of micron and nanoscale bubbles using Movie-Mode Dynamic Transmission Electron Microscopy (MM-DTEM). A 532 nm laser pulse (∼12 ns) was used to excite gold nanoparticles inside a ∼1.2 μm layer of water, and the resulting bubbles were observed with a series of nine electron pulses (∼10 ns) separated by as little as 40 ns peak to peak. Isolated nanobubbles were observed to collapse in less than 50 ns, while larger (∼2-3 μm) bubbles were observed to grow and collapse in less than 200 ns. Temporal profiles were generally asymmetric, possibly indicating faster growth than collapse dynamics, and the collapse time scale was found to be consistent with modeling and literature data from other techniques. More complex behavior was also observed for bubbles within proximity to each other, with interaction leading to longer lifetimes and more likely rebounding after collapse.
Collapse
Affiliation(s)
- Garth C Egan
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Eric Schwegler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. PHOTOACOUSTICS 2021; 23:100281. [PMID: 34194975 PMCID: PMC8233228 DOI: 10.1016/j.pacs.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmonic systems are becoming a favourable alternative to dye molecules in the generation of photoacoustic signals for spectroscopy and imaging. In particular, inorganic nanoparticles are appealing because of their versatility. In fact, as the shape, size and chemical composition of nanoparticles are directly correlated with their plasmonic properties, the excitation wavelength can be tuned to their plasmon resonance by adjusting such traits. This feature enables an extensive spectral range to be covered. In addition, surface chemical modifications can be performed to provide the nanoparticles with designed functionalities, e.g., selective affinity for specific macromolecules. The efficiency of the conversion of absorbed photon energy into heat, which is the physical basis of the photoacoustic signal, can be accurately determined by photoacoustic methods. This review contrasts studies that evaluate photoconversion in various kinds of nanomaterials by different methods, with the objective of facilitating the researchers' choice of suitable plasmonic nanoparticles for photoacoustic applications.
Collapse
Affiliation(s)
- Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
5
|
Tabayashi Y, Sakaki S, Koshizaki N, Yamauchi Y, Ishikawa Y. Behavior of Thermally Induced Nanobubbles during Instantaneous Particle Heating by Pulsed Laser Melting in Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7167-7175. [PMID: 34078084 DOI: 10.1021/acs.langmuir.1c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pulsed laser melting in liquid (PLML) is a technique to produce submicrometer spherical particles (SMPs). In this process, raw particles dispersed in liquid are selectively heated, and thermally induced nanobubbles (TINBs) at the particle surface are generated and act as a thermal barrier to enhance the temperature increase during heating. However, monitoring TINBs is difficult since PLML is a low-temperature, nonplasma process. Simple transmittance measurements of monodisperse Au SMP (250 nm) colloidal solutions on a transient time scale were used to monitor the temporal dependence of the TINB thickness and the pressure within the bubble. By applying this technique for ZnO and Sn SMP formation, TINBs in the PLML process are important in promoting the formation of large particles via particle merging during laser heating.
Collapse
Affiliation(s)
- Yasunori Tabayashi
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Shota Sakaki
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoto Koshizaki
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuji Yamauchi
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yoshie Ishikawa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
6
|
Ando K, Uchimoto Y, Nakajima T. Single-shot laser-scattering technique refined for the real-time monitoring and sizing of individual nanoparticles and nanobubbles in bulk water. OPTICS LETTERS 2020; 45:3321-3324. [PMID: 32538973 DOI: 10.1364/ol.394934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the growth dynamics and transport mechanism of nanoparticles/nanobubbles in a solution is an important issue in nanoscience and nanotechnology. Using a standard CMOS camera and a nanosecond laser at 532 nm, we demonstrate the far-field detection of polystyrene nanoparticles in bulk water. Conveniently, the sizes of individual nanoparticles are found to be reliably estimated from the brightness of scattering signals under the single laser pulses. Since the scattering efficiency of polystyrene nanoparticles is similar to that of nanobubbles, our results imply that the detection of nanobubbles in bulk solution is also possible.
Collapse
|
7
|
Doppenberg A, Meunier M, Boutopoulos C. A needle-like optofluidic probe enables targeted intracellular delivery by confining light-nanoparticle interaction on single cell. NANOSCALE 2018; 10:21871-21878. [PMID: 30457139 DOI: 10.1039/c8nr03895c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular delivery of molecular cargo is the basis for a plethora of therapeutic applications, including gene therapy and cancer treatment. A very efficient method to perform intracellular delivery is the photo-activation of nanomaterials that have been previously directed to the cell vicinity and bear releasable molecular cargo. However, potential in vivo applications of this method are limited by our ability to deliver nanomaterials and light in tissue. Here, we demonstrate intracelullar delivery using a needle-like optofluidic probe capable of penetrating soft tissue. Firstly, we used the optofluidic probe to confine an intracellular delivery mixture, composed of 100 nm gold nanoparticles (AuNP) and membrane-impermeable calcein, in the vicinity of cancer cells. Secondly, we delivered nanosecond (ns) laser pulses (wavelength: 532 nm; duration: 5 ns) using the same probe and without introducing a AuNP cells incubation step. The AuNP photo-activation caused localized and reversible disruption of the cell membrane, enabling calcein delivery into the cytoplasm. We measured 67% intracellular delivery efficacy and showed that the optofluidic probe can be used to treat cells with single-cell precision. Finally, we demonstrated targeted delivery in tissue (mouse retinal explant) ex vivo. We expect that this method can enable nanomaterial-assisted intracellular delivery applications in soft tissue (e.g. brain, retina) of small animals.
Collapse
Affiliation(s)
- Andrew Doppenberg
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
8
|
Wilson AM, Mazzaferri J, Bergeron É, Patskovsky S, Marcoux-Valiquette P, Costantino S, Sapieha P, Meunier M. In Vivo Laser-Mediated Retinal Ganglion Cell Optoporation Using K V1.1 Conjugated Gold Nanoparticles. NANO LETTERS 2018; 18:6981-6988. [PMID: 30285455 DOI: 10.1021/acs.nanolett.8b02896] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vision loss caused by retinal diseases affects hundreds of millions of individuals worldwide. The retina is a delicate central nervous system tissue stratified into layers of cells with distinct roles. Currently, there is a void in treatments that selectively target diseased retinal cells, and current therapeutic paradigms present complications associated with off-target effects. Herein, as a proof of concept, we introduce an in vivo method using a femtosecond laser to locally optoporate retinal ganglion cells (RGCs) targeted with functionalized gold nanoparticles (AuNPs). We provide evidence that AuNPs functionalized with an antibody toward the cell-surface voltage-gated K+ channel subunit KV1.1 can selectively deliver fluorescently tagged siRNAs or fluorescein isothiocyanate-dextran dye into retinal cells when irradiated with an 800 nm 100 fs laser. Importantly, neither AuNP administration nor irradiation resulted in RGC death. This system provides a novel, non-viral-based approach that has the potential to selectively target retinal cells in diseased regions while sparing healthy areas and may be harnessed in future cell-specific therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ariel M Wilson
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | - Éric Bergeron
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Sergiy Patskovsky
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Paule Marcoux-Valiquette
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | | | - Michel Meunier
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| |
Collapse
|
9
|
Hsu WH, Masim FCP, Balčytis A, Huang HH, Yonezawa T, Kuchmizhak AA, Juodkazis S, Hatanaka K. Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2609-2617. [PMID: 30416911 PMCID: PMC6204784 DOI: 10.3762/bjnano.9.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/09/2018] [Indexed: 06/09/2023]
Abstract
Enhancement of X-ray emission was observed from a micro-jet of a nano-colloidal gold suspension in air under double-pulse excitation of ultrashort (40 fs) near-IR laser pulses. Temporal and spatial overlaps between the pre-pulse and the main pulse were optimized for the highest X-ray emission. The maximum X-ray intensity was obtained at a 1-7 ns delay of the main pulse irradiation after the pre-pulse irradiation with the micro-jet position shifted along the laser beam propagation. It was revealed that the volume around gold nanoparticles where the permittivity is near zero, ε ≈ 0, accounts for the strongest absorption, which leads to the effective enhancements of X-ray emission.
Collapse
Affiliation(s)
- Wei-Hung Hsu
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | - Armandas Balčytis
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Hsin-Hui Huang
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 0608628, Japan
| | - Aleksandr A Kuchmizhak
- School of Natural Sciences, Far Eastern Federal University (FEFU), Vladivostok 690041, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Saulius Juodkazis
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Melbourne Centre for Nanofabrication, the Victorian Node of the Australian National Fabrication Facility, Clayton 3168 VIC, Australia
| | - Koji Hatanaka
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
- College of Engineering, Chang Gung University , Guishan, Taoyuan 33302, Taiwan
- Department of Materials Science and Engineering, National Dong-Hwa University, Shoufeng, Hualien 97401, Taiwan
| |
Collapse
|
10
|
Astafyeva LG, Pustovalov VK, Fritzsche W. Characterization of plasmonic and thermo-optical parameters of spherical metallic nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Masim FCP, Hsu WH, Liu HL, Yonezawa T, Balčytis A, Juodkazis S, Hatanaka K. Photoacoustic signal enhancements from gold nano-colloidal suspensions excited by a pair of time-delayed femtosecond pulses. OPTICS EXPRESS 2017; 25:19497-19507. [PMID: 29041143 DOI: 10.1364/oe.25.019497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photoacoustic signal enhancements were observed with a pair of time-delayed femtosecond pulses upon excitation of gold nanosphere colloidal suspension. A systematic experimental investigation of photoacoustic intensity within the delay time, Δt = 0 to 15 ns, was carried out. The results revealed a significant enhancement factor of ∼2 when the pre-pulse energy is 20-30% of the total energy. Pre-pulse and main pulse energy ratios, Ep(1):Es(2), were varied to determine the optimal ratio that yields to maximum photoacoustic signal enhancement. This enhancement was ascribed to the initial stage of thermalization and bubble generation in the nanosecond time scale. Pre-pulse scattering intensity measurements and numerical finite-difference time-domain calculations were performed to reveal dynamics and light field enchancement, respectively.
Collapse
|
12
|
Dagallier A, Boulais E, Boutopoulos C, Lachaine R, Meunier M. Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles. NANOSCALE 2017; 9:3023-3032. [PMID: 28182187 DOI: 10.1039/c6nr08773f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanoscale bubbles generated around laser-excited metallic nanoparticles are promising candidates for targeted drug and gene delivery in living cells. The development of new nanomaterials for efficient nanobubble-based therapy is however limited by the lack of reliable computational approaches for the prediction of their size and dynamics, due to the wide range of time and space scales involved. In this work, we present a multiscale modeling framework that segregates the various channels of plasmon de-excitation and energy transfer to describe the generation and dynamics of plasmonic nanobubbles. Detailed comparison with time-resolved shadowgraph imaging and spectroscopy data demonstrates that the bubble size, dynamics, and formation threshold can be quantitatively predicted for various types of nanostructures and irradiation parameters, with an error smaller than the experimental uncertainty. Our model in addition provides crucial physical insights into non-linear interactions in the near-field that should guide the experimental design of nanoplasmonic materials for nanobubble-based applications in nanomedicine.
Collapse
Affiliation(s)
- Adrien Dagallier
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada.
| | - Etienne Boulais
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada. and Laboratory of Biosensors and Nanomachines, Department of Chemistry, Montreal, Quebec H3T 1J4, Canada
| | - Christos Boutopoulos
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada. and SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK
| | - Rémi Lachaine
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada.
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada.
| |
Collapse
|
13
|
Boutopoulos C, Dagallier A, Sansone M, Blanchard-Dionne AP, Lecavalier-Hurtubise É, Boulais É, Meunier M. Photon-induced generation and spatial control of extreme pressure at the nanoscale with a gold bowtie nano-antenna platform. NANOSCALE 2016; 8:17196-17203. [PMID: 27714040 DOI: 10.1039/c6nr03888c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Precise spatial and temporal control of pressure stimulation at the nanometer scale is essential for the fabrication and manipulation of nano-objects, and for exploring single-molecule behaviour of matter under extreme conditions. However, state-of-the-art nano-mechanical transducers require sophisticated driving hardware and are currently limited to moderate pressure regimes. Here we report a gold plasmonic bowtie (AuBT) nano-antennas array that can generate extreme pressure stimulus of ∼100 GPa in the ps (10-12 s) time scale with sub-wavelength resolution upon irradiation with ultra-short laser pulses. Our method leverages the non-linear interaction of photons with water molecules to excite a nano-plasma in the plasmon-enhanced near-field and induce extreme thermodynamic states. The proposed method utilizes laser pulses, which in contrast to micro- and nano-mechanical actuators offers simplicity and versatility. We present time-resolved shadowgraphic imaging, electron microscopy and simulation data that suggest that our platform can efficiently create cavitation nano-bubbles and generate intense pressure in specific patterns, which can be controlled by the selective excitation of plasmon modes of distinct polarizations. This novel platform should enable probing non-invasively the mechanical response of cells and single-molecules at time and pressure regimes that are currently difficult to reach with other methods.
Collapse
Affiliation(s)
- Christos Boutopoulos
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada. and SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK
| | - Adrien Dagallier
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada.
| | - Maria Sansone
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada. and Dipartimento di Chimica "A.M. Tamburro", Università della Basilicata, Viadell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andre-Pierre Blanchard-Dionne
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada.
| | - Évelyne Lecavalier-Hurtubise
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada.
| | - Étienne Boulais
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada. and Laboratory of Biosensors and Nanomachines, Department of Chemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada.
| |
Collapse
|
14
|
Lachaine R, Boutopoulos C, Lajoie PY, Boulais É, Meunier M. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation. NANO LETTERS 2016; 16:3187-94. [PMID: 27048763 DOI: 10.1021/acs.nanolett.6b00562] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment. The methodology developed here thus provides a general strategy for the systematic design of nanoparticles for nanomedical applications and should be broadly applicable to bioimaging and cell nanosurgery.
Collapse
Affiliation(s)
- Rémi Lachaine
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
| | - Christos Boutopoulos
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
- School of Physics and Astronomy, SUPA, University of St. Andrews , North Haugh, St. Andrews, KY16 9SS, United Kingdom
| | - Pierre-Yves Lajoie
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
| | - Étienne Boulais
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
- Department of Chemistry, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
15
|
Pustovalov VK. Light-to-heat conversion and heating of single nanoparticles, their assemblies, and the surrounding medium under laser pulses. RSC Adv 2016. [DOI: 10.1039/c6ra11130k] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review presents a platform for the description of the thermal processes of laser–nanoparticle interactions and their applications.
Collapse
|