1
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
2
|
Hou R, Liu N, Li F. Nanoradiopharmaceuticals: An Attractive Concept in Oncotherapy. ChemMedChem 2024; 19:e202400423. [PMID: 39140435 DOI: 10.1002/cmdc.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Radiopharmaceuticals are of significant importance in the fields of tumor imaging and therapy. In recent decades, the increasing role of nanotechnology has led to the attractive concept of nanoradiopharmaceuticals. Consequently, it is imperative to provide a concise summary of the necessary guidelines to facilitate the translation of nanoradiopharmaceuticals. In this work, we have presented the contents of radiolabeling strategies and some applications of nanoradiopharmaceuticals. Such a framework can assist researchers in identifying more pertinent insights or making more informed decisions in the study of nanoradiopharmaceuticals.
Collapse
Affiliation(s)
- Ruitong Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
3
|
Cruz A, Pires RF, Raposinho P, Fernandes C, Paulo A, Bonifácio VDB. Ligand-free 99mTc-polyurea dendrimer complexes: nanoradiotheranostics targeting ovarian cancer. Chem Commun (Camb) 2024; 60:7874-7877. [PMID: 38819786 DOI: 10.1039/d4cc00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A folic acid-targeted polyurea (PURE) dendrimer was easily radiolabelled with Technetium-99m (99mTc-PUREG4-FA2) avoiding the use of additional ligands and bioconjugation chemistry. This straightforward strategy is enabled in PURE dendrimers due to their favourable surface terminal groups configuration, showing coordination capabilities and turning these biodendrimers into attractive platforms for nanoradiotheranostics.
Collapse
Affiliation(s)
- Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Rita F Pires
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Bioengineering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Choudhary M, Katare P, Deshpande M, Chaudhari N, Rajpoot K, Jain A, Tekade RK. Dendrimers in targeted drug delivery: design, development, and modern applications. PROGRESS AND PROSPECT OF NANOCARRIERS 2024:181-240. [DOI: 10.1016/b978-0-12-819979-4.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Bentivoglio V, Nayak P, Varani M, Lauri C, Signore A. Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use. Biomolecules 2023; 13:1241. [PMID: 37627307 PMCID: PMC10452659 DOI: 10.3390/biom13081241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Following previously published systematic reviews on the diagnostic use of nanoparticles (NPs), in this manuscript, we report published methods for radiolabeling nanoparticles with therapeutic alpha-emitting, beta-emitting, or Auger's electron-emitting isotopes. After analyzing 234 papers, we found that different methods were used with the same isotope and the same type of nanoparticle. The most common type of nanoparticles used are the PLGA and PAMAM nanoparticles, and the most commonly used therapeutic isotope is 177Lu. Regarding labeling methods, the direct encapsulation of the isotope resulted in the most reliable and reproducible technique. Radiolabeled nanoparticles show promising results in metastatic breast and lung cancer, although this field of research needs more clinical studies, mainly on the comparison of nanoparticles with chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (V.B.); (P.N.); (M.V.); (C.L.)
| |
Collapse
|
6
|
Tomás H, Rodrigues J. Dendrimers and dendrimer-based nano-objects for oncology applications. NEW TRENDS IN SMART NANOSTRUCTURED BIOMATERIALS IN HEALTH SCIENCES 2023:41-78. [DOI: 10.1016/b978-0-323-85671-3.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
9
|
Lin J, Yin M, Liu X, Meng F, Luo L. Nanomaterials Based on Functional Polymers for Sensitizing Cancer Radiotherapy. Macromol Rapid Commun 2022; 43:e2200194. [PMID: 35578790 DOI: 10.1002/marc.202200194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Despite being the mainstay treatment for many types of cancer in clinic, radiotherapy is undertaking great challenges in overcoming a series of limitations. Radiosensitizers are promising agents capable of depositing irradiation energy and generating free radicals to enhance the radiosensitivity of tumor cells. Combining radiosensitizers with functional polymer-based nanomaterials holds great potential to improve biodistribution, circulation time, and stability in vivo. The derived polymeric nano-radiosensitizers can significantly improve the efficiency of tumor targeting and radiotherapy, and reduce the side effect to healthy tissues. In this review, we provide an overview of functional polymer-based nanomaterials for radiosensitization in recent years. Particular emphases are given to the action mechanisms, drug loading methods, targeting efficiencies, the impact on therapeutic effects and biocompatibility of various radiosensitizing polymers, which are classified as polymeric micelles, dendrimers, polymeric nanospheres, nanoscale coordination polymers, polymersomes, and nanogels. The challenges and outlooks of polymeric nano-radiosensitizers are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinfeng Lin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
10
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
11
|
Kankala RK, Han YH, Xia HY, Wang SB, Chen AZ. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnology 2022; 20:126. [PMID: 35279150 PMCID: PMC8917689 DOI: 10.1186/s12951-022-01315-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Despite exceptional morphological and physicochemical attributes, mesoporous silica nanoparticles (MSNs) are often employed as carriers or vectors. Moreover, these conventional MSNs often suffer from various limitations in biomedicine, such as reduced drug encapsulation efficacy, deprived compatibility, and poor degradability, resulting in poor therapeutic outcomes. To address these limitations, several modifications have been corroborated to fabricating hierarchically-engineered MSNs in terms of tuning the pore sizes, modifying the surfaces, and engineering of siliceous networks. Interestingly, the further advancements of engineered MSNs lead to the generation of highly complex and nature-mimicking structures, such as Janus-type, multi-podal, and flower-like architectures, as well as streamlined tadpole-like nanomotors. In this review, we present explicit discussions relevant to these advanced hierarchical architectures in different fields of biomedicine, including drug delivery, bioimaging, tissue engineering, and miscellaneous applications, such as photoluminescence, artificial enzymes, peptide enrichment, DNA detection, and biosensing, among others. Initially, we give a brief overview of diverse, innovative stimuli-responsive (pH, light, ultrasound, and thermos)- and targeted drug delivery strategies, along with discussions on recent advancements in cancer immune therapy and applicability of advanced MSNs in other ailments related to cardiac, vascular, and nervous systems, as well as diabetes. Then, we provide initiatives taken so far in clinical translation of various silica-based materials and their scope towards clinical translation. Finally, we summarize the review with interesting perspectives on lessons learned in exploring the biomedical applications of advanced MSNs and further requirements to be explored.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China.
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| |
Collapse
|
12
|
Gibbens-Bandala B, Trujillo-Nolasco M, Cruz-Nova P, Aranda-Lara L, Ocampo-García B. Dendrimers as Targeted Systems for Selective Gene and Drug Delivery. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:361-397. [DOI: 10.1007/978-3-031-12658-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Varani M, Galli F, Bentivoglio V, Signore A. Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Cheng D, Gong J, Wang P, Zhu J, Yu N, Zhao J, Zhang Q, Li J. 131I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. J Mater Chem B 2021; 9:9316-9323. [PMID: 34719700 DOI: 10.1039/d1tb02115j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photothermal therapy (PTT) has shown great promise for cancer treatment via light-triggered heat generation, while the anticancer efficacy of sole PTT is often limited. In this study, we report the use of radionuclide 131I-labeled gold nanoframeworks (131I-AuNFs) for radiotherapy-combined second near-infrared (NIR-II) PTT of breast cancer. AuNFs synthesized via a simple reduction approach are surface functionalized with polydopamine and poly(ethylene glycol), followed by labeling with 131I. The formed 131I-AuNFs with a high photothermal conversion efficacy and stable radioactivity can effectively accumulate into subcutaneous 4T1 mouse models as confirmed by in vivo single photon emission computed tomography (SPECT) imaging. Upon 1064 nm laser irradiation of tumors, local heat is generated for NIR-II PTT, which combines with radiotherapy to achieve a much higher therapeutic efficacy relative to sole treatment. As such, 131I-AuNFs-mediated radiotherapy-combined NIR-II PTT results in the effective inhibition of the growth of subcutaneous tumors. This study thus provides a facile nanoplatform for effective combination cancer therapy.
Collapse
Affiliation(s)
- Danling Cheng
- Shanghai Key Laboratory of Lightweight Composite, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| | - Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China.
| | - Peng Wang
- Department of General Surgery, The Fifth People's Hospital of Jinan, 250022, P. R. China
| | - Jingyi Zhu
- Shanghai Key Laboratory of Lightweight Composite, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China. .,School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Ningyue Yu
- Shanghai Key Laboratory of Lightweight Composite, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China.
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Jingchao Li
- Shanghai Key Laboratory of Lightweight Composite, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
15
|
Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202104199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractNanomaterials with cancer‐imaging and therapeutic properties have emerged as the principal focus of nanotheranostics. The past decade has experienced a significant increase in research in the design, formulation, and preclinical and clinical trials of theranostic nanosystems. However, current theranostic nanoformulations have yet to be approved by the FDA for clinical use. Consequently, the present review focuses on the importance of the careful examination of the in vivo preclinical status of specific nanotheranostic materials as a prerequisite for their clinical translation. The scope of coverage is structured according to all of the major organic, inorganic, 2D, and hybrid nanotheranostic materials and their in vivo preclinical status. The therapeutic advantages and limitations of these materials in animal models are considered and the various strategies to enhance the biocompatibility of theranostic nanoparticles are summarized.
Collapse
Affiliation(s)
- Kochurani K. Johnson
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Pramod Koshy
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Jia‐Lin Yang
- Prince of Wales Clinical School Faculty of Medicine UNSW Sydney Sydney New South Wales 2052 Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
16
|
Zhu J, Yang J, Zhao L, Zhao P, Yang J, Zhao J, Miao W. 131I-Labeled Multifunctional Polyethylenimine/Doxorubicin Complexes with pH-Controlled Cellular Uptake Property for Enhanced SPECT Imaging and Chemo/Radiotherapy of Tumors. Int J Nanomedicine 2021; 16:5167-5183. [PMID: 34354350 PMCID: PMC8331118 DOI: 10.2147/ijn.s312238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Smart theranostic nanosystems own a favorable potential to improve internalization within tumor while avoiding nonspecific interaction with normal tissues. However, development of this type of theranostic nanosystems is still a challenge. Methods In this study, we developed the iodine-131 (131I)-labeled multifunctional polyethylenimine (PEI)/doxorubicin (DOX) complexes with pH-controlled cellular uptake property for enhanced single-photon emission computed tomography (SPECT) imaging and chemo/radiotherapy of tumors. Alkoxyphenyl acylsulfonamide (APAS), a typical functional group that could achieve improved cellular uptake of its modified nanoparticles, was utilized to conjugate onto the functional PEI pre-modified with polyethylene glycol (PEG) with terminal groups of monomethyl ether and N-hydroxysuccinimide (mPEG-NHS), PEG with terminal groups of maleimide and succinimidyl valerate (MAL-PEG-SVA) through sulfydryl of APAS and MAL moiety of MAL-PEG-SVA. This was followed by conjugation with 3-(4’-hydroxyphenyl)propionic acid-OSu (HPAO), acetylating leftover amines of PEI, complexing DOX and labeling 131I to generate the theranostic nanosystems. Results The synthesized theranostic nanosystems exhibit favorable water solubility and stability. Every functional PEI can complex approximately 12.4 DOX, which could sustainably release of DOX following a pH-dependent manner. Remarkably, due to the surface modification of APAS, the constructed theranostic nanosystems own the capacity to achieve pH-responsive charge conversion and further lead to improved cellular uptake in cancer cells under slightly acidic condition. Above all, based on the coexistence of DOX and radioactive 131I in the single nanosystem, the synthesized nanohybrid system could afford enhanced SPECT imaging and chemo/radioactive combination therapy of cancer cells in vitro and xenografted tumor model in vivo. Discussion The developed smart nanohybrid system provides a novel strategy to improve the tumor theranostic efficiency and may be applied for different types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Junxing Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Pingping Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
17
|
Bayoumi NA, El-Kolaly MT. Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.
Collapse
Affiliation(s)
- Noha Anwer Bayoumi
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Mohamed Taha El-Kolaly
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
18
|
Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral JP. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. J Control Release 2021; 332:346-366. [PMID: 33675878 DOI: 10.1016/j.jconrel.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Nanomedicine represents a very significant contribution in current cancer treatment; in addition to surgical intervention, radiation and chemotherapeutic agents that unfortunately also kill healthy cells, inducing highly deleterious and often life-threatening side effects in the patient. Of the numerous nanoparticles used against cancer, gold nanoparticles had been developed for therapeutic applications. Inter alia, a large variety of dendrimers, i.e. soft artificial macromolecules, have turned up as non-viral functional nanocarriers for entrapping drugs, imaging agents, and targeting molecules. This review will provide insights into the design, synthesis, functionalization, and development in biomedicine of engineered functionalized hybrid dendrimer-tangled gold nanoparticles in the domain of cancer theranostic. Several aspects are highlighted and discussed such as 1) dendrimer-entrapped gold(0) hybrid nanoparticles for the targeted imaging and treatment of cancer cells, 2) dendrimer encapsulating gold(0) nanoparticles (Au DENPs) for the delivery of genes, 3) Au DENPs for drug delivery applications, 4) dendrimer encapsulating gold radioactive nanoparticles for radiotherapy, and 5) dendrimer/dendron-complexed gold(III) nanoparticles as technologies to take down cancer cells.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Valentin Ceña
- CIBERNED, ISCII, MAdrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
19
|
Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral JP. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. J Control Release 2021. [DOI: https://doi.org/10.1016/j.jconrel.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a known deadliest disease that requires a judicious diagnostic, targeting, and treatment strategy for an early prognosis and selective therapy. The major pitfalls of the conventional approach are non-specificity in targeting, failure to precisely monitor therapy outcome, and cancer progression leading to malignancies. The unique physicochemical properties offered by nanotechnology derived nanocarriers have the potential to radically change the landscape of cancer diagnosis and therapeutic management. An integrative approach of utilizing both diagnostic and therapeutic functionality using a nanocarrier is termed as nanotheranostic. The nanotheranostics platform is designed in such a way that overcomes various biological barriers, efficiently targets the payload to the desired locus, and simultaneously supports planning, monitoring, and verification of treatment delivery to demonstrate an enhanced therapeutic efficacy. Thus, a nanotheranostic platform could potentially assist in drug targeting, image-guided focal therapy, drug release and distribution monitoring, predictionof treatment response, and patient stratification. A class of highly branched nanocarriers known as dendrimers is recognized as an advanced nanotheranostic platform that has the potential to revolutionize the oncology arena by its unique and exciting features. A dendrimer is a well-defined three-dimensional globular chemical architecture with a high level of monodispersity, amenability of precise size control, and surface functionalization. All the dendrimer properties exhibit a reproducible pharmacokinetic behavior that could ensure the desired biodistribution and efficacy. Dendrimers are thus being exploited as a nanotheranostic platform embodying a diverse class of therapeutic, imaging, and targeting moieties for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Vikrant Saluja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yachana Mishra
- Department of Zoology, Shri Shakti Degree College, Sankhahari, Ghatampur, Kanpur Nagar, Uttar Pradesh, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Namita Giri
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Pallavi Nayak
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
21
|
Ouyang Z, Gao Y, Shen M, Shi X. Dendrimer-based nanohybrids in cancer photomedicine. Mater Today Bio 2021; 10:100111. [PMID: 34027382 PMCID: PMC8134734 DOI: 10.1016/j.mtbio.2021.100111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer phototherapy with non-invasiveness and high therapeutical efficiency has emerged as a hot spot research in cancer management. Various nanomaterials have been involved in the development of novel photoactive agents to overcome the current limitations in cancer phototherapy. Dendrimers, as an excellent nanocarrier with unique physicochemical properties, have received extensive attention and much effort has been made in the development of dendrimer-based hybrid platforms for photomedicine applications. Dendrimers can be entrapped with photosensitive agents within their internal cavities and be surface modified with reactive molecules, constructing multifunctional nanoplatforms for cancer treatment. In this review, we concisely survey the design of several different kinds of dendrimer-based nanohybrids for cancer photomedicine applications, and provide an overview of their recent applications in molecular imaging, single-modality photothermal therapy or photodynamic therapy, combination therapy, and theranostics of cancer. In addition, we also briefly discuss the future perspectives in the area of dendrimer-based nanohybrids for cancer photomedicine.
Collapse
Affiliation(s)
- Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
22
|
Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS APPLIED BIO MATERIALS 2021; 4:1115-1139. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Integration of diagnostic and therapeutic functions in a single platform namely theranostics has become a cornerstone for personalized medicine. Theranostics platform facilitates noninvasive detection and treatment while allowing the monitoring of disease progression and therapeutic efficacy in case of chronic conditions of cancer and Alzheimer's disease (AD). Theranostic tools function by themselves or with the aid of carrier, viz. liposomes, micelles, polymers, or dendrimers. The dendrimer architectures (DA) are well-characterized molecular nanoobjects with a large number of terminal functional groups to enhance solubility and offer multivalency and multifunctional properties. Various noninvasive diagnostic tools like magnetic resonance imaging (MRI), computed tomography (CT), gamma scintigraphy, and optical techniques have been accomplished utilizing DAs for simultaneous imaging and drug delivery. Obstacles in the formulation design, drug loading, payload delivery, biocompatibility, overcoming cellular membrane and blood-brain barrier (BBB), and systemic circulation remain a bottleneck in translational efforts. This review focuses on the diagnostic, therapeutic and theranostic potential of DA-based nanocarriers in treating cancer and neurodegenerative disorders like AD and Parkinson's disease (PD), among others. In view of the inverse relationship between cancer and AD, designing suitable DA-based theranostic nanodrug with high selectivity has tremendous implications in personalized medicine to treat cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
23
|
Song C, Shen M, Rodrigues J, Mignani S, Majoral JP, Shi X. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213463] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Song C, Shen M, Rodrigues J, Mignani S, Majoral JP, Shi X. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord Chem Rev 2020. [DOI: https://doi.org/10.1016/j.ccr.2020.213463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Wei G, Zhao G, Lin N, Guang S, Xu H. Water-soluble fluorescent copolymer for effective recognition and imaging of tumor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Fan Y, Lin L, Yin F, Zhu Y, Shen M, Wang H, Du L, Mignani S, Majoral JP, Shi X. Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. NANO TODAY 2020; 33:100899. [DOI: 10.1016/j.nantod.2020.100899] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Zhu J, Zhao L, Zhao P, Yang J, Shi J, Zhao J. Charge-conversional polyethylenimine-entrapped gold nanoparticles with 131I-labeling for enhanced dual mode SPECT/CT imaging and radiotherapy of tumors. Biomater Sci 2020; 8:3956-3965. [PMID: 32555790 DOI: 10.1039/d0bm00649a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel theranostic nanosystems demonstrate great potential to achieve timely diagnosis and effective therapy at the same time. However, due to the relatively low accumulation of theranostic nanosystems at the tumor site, the theranostic efficiency is limited. In this study, a novel theranostic nanosystem with a pH-responsive charge conversion property was constructed to improve the cellular uptake towards cancer cells for enhanced single photon emission computed tomography (SPECT)/computed tomography (CT) dual mode imaging and radiotherapy of tumors. In detail, polyethylenimine (PEI) was utilized as a nanoplatform to link with polyethylene glycol (PEG) monomethyl ether with one end of N-hydroxylsuccinimide (mPEG-NHS), PEG with ends of maleimide and succinimidyl valerate (MAL-PEG-SVA), alkoxyphenyl acylsulfonamide (APAS), 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO), and fluorescein isothiocyanate (FI), successively. The formed functionalized PEI was then utilized to entrap gold nanoparticles, acetylate the remaining amines of PEI and label with radioactive iodine-131 (131I) to build theranostic nanosystems. The result demonstrated that the theranostic nanosystem has a 3.8 nm Au core and showed excellent colloidal stability. On account of the charge conversion property of APAS, the APAS linked PEI entrapped gold nanoparticles could switch from neutral to positive in a slightly acidic microenvironment, which induced improved cellular uptake. Above all, after 131I labeling, the generated theranostic nanosystem could achieve enhanced SPECT/CT dual mode imaging and radiotherapy of cancer cells in vitro and a xenograft tumor model in vivo. The constructed APAS-linked PEI nanosystem has great potential to be used as a model for SPECT/CT imaging and radiotherapy of various types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
28
|
Song N, Zhao L, Xu X, Zhu M, Liu C, Sun N, Yang J, Shi X, Zhao J. LyP-1-Modified Multifunctional Dendrimers for Targeted Antitumor and Antimetastasis Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12395-12406. [PMID: 32077680 DOI: 10.1021/acsami.9b18881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We designed and synthesized 131I-labeled dendrimers modified with the LyP-1 peptide as a multifunctional platform for single-photon emission computed tomography (SPECT) imaging, radionuclide therapy, and antimetastasis therapy of cancer. The multifunctional platform was constructed by modifying amine-terminated generation 5 poly(amidoamine) dendrimers with 33.1 LyP-1 peptide and 9.2 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO), followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I via the HPAO moieties. The LyP-1-modified dendrimers showed favorable cytocompatibility in the studied concentration range of 0.1-10 μM for 24 h and could be labeled by 131I with satisfactory radiochemical purity (>99%) and stability (>90% even at 16 h). The 131I-labeled LyP-1-modified dendrimers were capable of being utilized as a diagnostic probe for SPECT imaging and as a therapeutic agent for radionuclide therapy and antimetastasis of cancer cells in vitro and in a subcutaneous tumor model in vivo. Based on analyses of the tumor microenvironment, the antitumor and antimetastasis effects could be because of the reduced levels of the molecular markers associated with proliferation and metastasis, improved local hypoxia, and increased apoptosis rate. The developed 131I-labeled dendrimeric nanodevice may hold great promise to be used as a nanotheranostic platform for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ningning Song
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Xiaoying Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, People's Republic of China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Na Sun
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| |
Collapse
|
29
|
Zhang GX, Liu YL, Yang M, Huang WS, Xu JH. An aptamer-based, fluorescent and radionuclide dual-modality probe. Biochimie 2020; 171-172:55-62. [PMID: 32081705 DOI: 10.1016/j.biochi.2020.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022]
Abstract
Aptamers which are promising and effective molecular probes, can deliver either fluorescent materials or radionuclides to tumors. This study aimed to develop a novel both fluorescent and radionuclide dual-modality probe based on a truncated aptamer and evaluate its stability and binding affinities in vitro. The aptamer JHIT2 with binding specifically to HepG2 cells was previously generated by Cell-SELEX. Using mfold and RNAstructure software to predict the secondary structure folded by a middle random sequence to truncate the primer sequences at both ends of the aptamer JHIT2 to yield the aptamer JHIT2e, with a similar secondary structure to JHIT2 and the same specificity and affinity as JHIT2. Attaching carboxyfluorescein (FAM) readily to the aptamer JHIT2e and then attaching iodine-131 to the FAM moiety which has multiple sites for iodine labeling to develop a novel both fluorescent and radionuclide dual-modality probe, termed 131I-FAM-JHIT2e. Cell uptake and fluorescence imaging assays in vitro confirmed that 131I-FAM-JHIT2e had both FAM fluorescence signal and radio-activity signal and maintained specific binding ability to the human hepatoma cell line HepG2. This work formed a basis for aptamer-based, dual-modality imaging probe that contains both fluorescent and radionuclide tags, which also is potential for theranostics.
Collapse
Affiliation(s)
- Gui-Xiong Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| | - Yan-Lan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.
| | - Min Yang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Wen-Shan Huang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jie-Hua Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
30
|
Xiao T, Li D, Shi X, Shen M. PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications. Macromol Biosci 2019; 20:e1900282. [DOI: 10.1002/mabi.201900282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Xiao
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Du Li
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Mingwu Shen
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
31
|
Zhu W, Zhao L, Fan Y, Zhao J, Shi X, Shen M. 131 I-Labeled Multifunctional Polyphosphazene Nanospheres for SPECT Imaging-Guided Radiotherapy of Tumors. Adv Healthc Mater 2019; 8:e1901299. [PMID: 31697048 DOI: 10.1002/adhm.201901299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Indexed: 12/31/2022]
Abstract
Design of theranostic nanoplatforms represents a major topic for current nanomedicine. Here, the preparation of multifunctional poly(cyclotriphosphazene-co-polyethylenimine) nanospheres (PNSs) labeled with radionuclide 131 I for single photon emission computed tomography (SPECT) imaging-guided radiotherapy of tumors is reported. In this work, PNSs are prepared using hexachlorocyclotriphosphazene as a crosslinker to crosslink branched polyethylenimine (PEI) via a nucleophilic substitution reaction, modified with 3-(4'-hydroxyphenyl) propionic acid-OSu (HPAO) for 131 I labeling, and reacted with 1,3-propane sulfonate (1,3-PS) to render the particles with antifouling property, followed by acetylation of the remaining surface amines and labeling with 131 I. The acquired PNS.NHAc-HPAO(131 I)-PS particles are well characterized. It is shown that the multifunctional PNSs with an average size of 184 ± 29.3 nm exhibit favorable antifouling properties, high 131 I labeling efficiency (76.05 ± 3.75%), and excellent radiostability and colloidal stability. With these properties owned, the developed PNS.NHAc-HPAO(131 I)-PS spheres enable much more efficient SPECT imaging and radiotherapy of a xenografted tumor model in vivo than the PEI counterpart material (PEI.NHAc-HPAO(131 I)-PS). The developed PNSs may be used as a versatile platform for further development of different forms of nanomedicine for various biomedical applications.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Lingzhou Zhao
- Department of Nuclear MedicineShanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai 200080 P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Jinhua Zhao
- Department of Nuclear MedicineShanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai 200080 P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
- CQM‐Centro de Química da MadeiraUniversidade da Madeira Campus da Penteada 9000–390 Funchal Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
32
|
Zou Y, Li D, Shen M, Shi X. Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 2019; 19:e1900272. [PMID: 31531955 DOI: 10.1002/mabi.201900272] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Nanogels (NGs) are 3-dimensional (3D) networks composed of hydrophilic or amphiphilic polymer chains, allowing for effective and homogeneous encapsulation of drugs, genes, or imaging agents for biomedical applications. Polyethylenimine (PEI), possessing abundant positively charged amine groups, is an ideal platform for the development of NGs. A variety of effective PEI-based NGs have been designed and much effort has been devoted to study the relationship between the structure and function of the NGs. In particular, PEI-based NGs can be prepared either using PEI as the major NG component or using PEI as a crosslinker. This review reports the recent progresses in the design of PEI-based NGs for gene and drug delivery and for bioimaging applications with a target focus to tackle the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Yu Zou
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| | - Du Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
33
|
Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials. Future Med Chem 2019; 11:1791-1810. [DOI: 10.4155/fmc-2018-0452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are synthetic polymers that grow in three dimensions into well-defined structures. Their morphological appearance resembles a number of trees connected by a common point. Dendritic nanoparticles have been studied for a large number of pharmaceutical and biomedical applications including gene and drug delivery, clinical diagnosis and MRI. Despite the application of dendrimers, research is still in its childhood in comparison with liposomes and other nanomaterials. They are now playing a key role in several therapeutic strategies, with dendrimer-based products in clinical trials. The aim of this review is to describe the state-of-the-art of biomedical applications of dendrimers – and dendrimer conjugates – such as drug and gene delivery and antiviral activity.
Collapse
|
34
|
Cao J, Wei Y, Zhang Y, Wang G, Ji X, Zhong Z. Iodine-Rich Polymersomes Enable Versatile SPECT/CT Imaging and Potent Radioisotope Therapy for Tumor in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18953-18959. [PMID: 31062589 DOI: 10.1021/acsami.9b04294] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging tumor treatment demands high sensitivity and high-spatial resolution diagnosis in combination with targeted therapy. Here, we report that iodine-rich polymersomes (I-PS) enable versatile single-photon emission computed tomography (SPECT)/computed tomography (CT) dual-modal imaging and potent radioisotope therapy for breast cancer in vivo. Interestingly, I-PS could be easily and stably labeled with radioiodine, 125I and 131I. Dynamic light scattering and transmission electron microscopy showed that 125I-PS had a size of 106 nm and vesicular morphology, similar to those of the parent I-PS. Methyl thiazolyl tetrazolium assays displayed that I-PS and 125I-PS were noncytotoxic, whereas 131I-PS caused significant death of 4T1 cells at 5 mg PS/mL with a radioactivity of 12 μCi. Pharmacokinetic and biodistribution studies showed that 125I-PS has a prolonged circulation and distributes mainly in tumor and the reticuloendothelial system. The intravenous injection of 125I-PS to 4T1 murine breast tumor-bearing mice allowed simultaneous high sensitivity and high-spatial resolution imaging of tumor by SPECT and CT, respectively. The therapeutic studies revealed that 131I-PS could effectively retard the growth of 4T1 breast tumor and significantly prolong mice survival time. The hematoxylin and eosin staining assay proved that 131I-PS induced tumor cell death. I-PS emerges as a robust and versatile platform for dual-modal imaging and targeted radioisotope therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Ji
- Institute of Nuclear Energy Safety Technology , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | | |
Collapse
|
35
|
Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019; 20:E2323. [PMID: 31083402 PMCID: PMC6539387 DOI: 10.3390/ijms20092323] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
In the last two decades, various nanomaterials have attracted increasing attention in medical science owing to their unique physical and chemical characteristics. Incorporating radionuclides into conventionally used nanomaterials can confer useful additional properties compared to the original material. Therefore, various radionuclides have been used to synthesize functional nanomaterials for biomedical applications. In particular, several α- or β-emitter-labeled organic and inorganic nanoparticles have been extensively investigated for efficient and targeted cancer treatment. This article reviews recent progress in cancer therapy using radiolabeled nanomaterials including inorganic, polymeric, and carbon-based materials and liposomes. We first provide an overview of radiolabeling methods for preparing anticancer agents that have been investigated recently in preclinical studies. Next, we discuss the therapeutic applications and effectiveness of α- or β-emitter-incorporated nanomaterials in animal models and the emerging possibilities of these nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
36
|
Zhu J, Li H, Xiong Z, Shen M, Conti PS, Shi X, Chen K. Polyethyleneimine-Coated Manganese Oxide Nanoparticles for Targeted Tumor PET/MR Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34954-34964. [PMID: 30234287 PMCID: PMC7469916 DOI: 10.1021/acsami.8b12355] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A Mn3O4 nanoparticle (NP)-based dual-modality probe has been developed for tumor positron emission tomography (PET)/magnetic resonance (MR) imaging. The dual-modality imaging probe was constructed by modifying multifunctional polyethyleneimine (PEI)-coated Mn3O4 NPs with folic acid (FA), followed with the radiolabeling with 64Cu. The formed imaging probe was utilized for PET/MR imaging of human cervical cancer mouse xenografts, which overexpress folate receptor (FR). The PEI-coated Mn3O4 NPs were synthesized using a solvothermal approach via decomposition of acetylacetone manganese. Multifunctional groups, including fluorescein isothiocyanate (FI), PEGylated FA, and NOTA chelator, were then sequentially loaded onto the surface of the amine groups of the Mn3O4 NPs. The remaining PEI amines were neutralized by the acetylation reaction. The resulting NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs were fully characterized and evaluated in vitro and successfully radiolabeled with 64Cu for tumor PET/MR imaging in small animals. In vivo blocking experiments were performed to determine the FR binding specificity of NPs. PET imaging results demonstrated that 64Cu-labeled Mn3O4 NPs display good tracer uptake in the FR-expressing HeLa tumors (tumor-to-muscle (T/M) ratio: 5.35 ± 0.31 at 18 h postinjection (pi)) and substantially reduced tracer uptake in the FR-blocked HeLa tumors (T/M ratio: 2.78 ± 0.68 at 18 h pi). The ex vivo data, including PET imaging and biodistribution, further confirmed the tumor binding specificity of the 64Cu-labeled Mn3O4 NPs. Moreover, the FR-targeted Mn3O4 NPs exhibited efficient T1-weighted MR imaging (MRI), leading to the precise tumor MRI at 18 h pi. PET/MR imaging with the 64Cu-NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs may offer a new quantitative approach to precisely measure the FR in tumors. The strategy of incorporating PEI nanotechnology into the construction of new biomaterials may be applied for the construction of novel nanoplatforms for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jingyi Zhu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongsheng Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Corresponding Authors:. Tel: +86-21-67792656. Fax: +86-21-67792306 804 (X.S.)., . Tel: +1-323-442-3858. Fax: +1-323-442-3253 (K.C.)
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Corresponding Authors:. Tel: +86-21-67792656. Fax: +86-21-67792306 804 (X.S.)., . Tel: +1-323-442-3858. Fax: +1-323-442-3253 (K.C.)
| |
Collapse
|
37
|
Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12428-12435. [PMID: 30251859 DOI: 10.1021/acs.langmuir.8b02901] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel theranostic nanocarriers exhibit a desirable potential to treat diseases based on their ability to achieve targeted therapy while allowing for real-time imaging of the disease site. Development of such theranostic platforms is still quite challenging. Herein, we present the construction of multifunctional dendrimer-based theranostic nanosystem to achieve cancer cell chemotherapy and computed tomography (CT) imaging with targeting specificity. Doxorubicin (DOX), a model anticancer drug, was first covalently linked onto the partially acetylated poly(amidoamine) dendrimers of generation 5 (G5) prefunctionalized with folic acid (FA) through acid-sensitive cis-aconityl linkage to form G5·NHAc-FA-DOX conjugates, which were then entrapped with gold (Au) nanoparticles (NPs) to create dendrimer-entrapped Au NPs (Au DENPs). We demonstrate that the prepared DOX-Au DENPs possess an Au core size of 2.8 nm, have 9.0 DOX moieties conjugated onto each dendrimer, and are colloid stable under different conditions. The formed DOX-Au DENPs exhibit a pH-responsive release profile of DOX because of the cis-aconityl linkage, having a faster DOX release rate under a slightly acidic pH condition than under a physiological pH. Importantly, because of the coexistence of targeting ligand FA and Au core NPs as a CT imaging agent, the multifunctional DOX-loaded Au DENPs afford specific chemotherapy and CT imaging of FA receptor-overexpressing cancer cells. The constructed DOX-conjugated Au DENPs hold a promising potential to be utilized for simultaneous chemotherapy and CT imaging of various types of cancer cells.
Collapse
Affiliation(s)
- Jingyi Zhu
- Cancer Center , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Guoying Wang
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Carla S Alves
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials , Northwestern Polytechnical University , Xi'an 710072 , People's Republic of China
| | - Xiangyang Shi
- Cancer Center , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
38
|
Banaszak Holl MM, Dougherty CA, Vaidyanathan S. Tailoring dendrimer conjugates for biomedical applications: the impact of altering hydrophobicity. JOURNAL OF NANOPARTICLE RESEARCH 2018; 20:284. [DOI: 10.1007/s11051-018-4380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2025]
|
39
|
Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018. [DOI: https://doi.org/10.1021/acs.langmuir.8b02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyi Zhu
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Guoying Wang
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Carla S. Alves
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Xiangyang Shi
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
40
|
Mignani S, Rodrigues J, Tomas H, Caminade AM, Laurent R, Shi X, Majoral JP. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. SCIENCE CHINA-MATERIALS 2018. [DOI: 10.1007/s40843-018-9244-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018; 23:E826. [PMID: 29617302 PMCID: PMC6017446 DOI: 10.3390/molecules23040826] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover, to achieve the accurate pre-diagnosis and real-time monitoring for tumor, the research of nano-theranostics, which integrates diagnosis with treatment process, is a promising field in cancer treatment. In this review, the recent studies on combinational therapy based on chemotherapy will be systematically discussed. Furthermore, as a current trend in cancer treatment, advance in theranostic nanoparticles based on chemotherapy will be exemplified briefly. Finally, the present challenges and improvement tips will be presented in combination therapy and nano-theranostics.
Collapse
Affiliation(s)
| | | | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhong-Min Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
42
|
Fan Y, Sun W, Shi X. Design and Biomedical Applications of Poly(amidoamine)‐Dendrimer‐Based Hybrid Nanoarchitectures. SMALL METHODS 2017; 1. [DOI: 10.1002/smtd.201700224] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDendrimers, especially poly(amidoamine) (PAMAM) dendrimers, possess unique properties such as 3D architecture, monodispersity, highly branched macromolecular characteristics, and tunable terminal functionalities. These properties allow them to be used for controlled synthesis and assembly of hybrid nanoarchitectures with a range of properties suitable for biomedical applications. Here, the recent advances in the design of different PAMAM‐dendrimer‐based hybrid nanoarchitectures for various biomedical applications, in particular for molecular imaging, nonviral gene delivery, and theranostics, are summarized and discussed; future perspectives are also briefly illustrated.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
- CQM‐Centro de Química da Madeira Universidade da Madeira Campus da Penteada 9000‐390 Funchal Portugal
| |
Collapse
|
43
|
An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomater 2017; 62:273-283. [PMID: 28823719 DOI: 10.1016/j.actbio.2017.08.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 12/27/2022]
Abstract
The combination of chemotherapy and photothermal therapy (PTT) in multifunctional nanoplatforms to improve cancer therapeutic efficacy is of great significance while it still remains to be a challenging task. Herein, we report Au nanostar (NS)-coated hollow mesoporous silica nanocapsules (HMSs) with surface modified by arginine-glycine-aspartic acid (RGD) peptide as a drug delivery system to encapsulate doxorubicin (DOX) for targeted chemotherapy and PTT of tumors. Au NSs-coated HMSs core/shell nanocapsules (HMSs@Au NSs) synthesized previously were conjugated with RGD peptide via a spacer of polyethylene glycol (PEG). We show that the prepared HMSs@Au-PEG-RGD NSs are non-cytotxic in the given concentration range, and have a DOX encapsulation efficiency of 98.6±0.7%. The designed HMSs@Au-PEG-RGD NSs/DOX system can release DOX in a pH/NIR laser dual-responsive manner. Importantly, the formed HMSs@Au-PEG-RGD NSs/DOX nanoplatform can specifically target cancer cells overexpressing αvβ3 intergrin and exert combination chemotherapy and PTT efficacy to the cells in vitro and a xenografted tumor model in vivo. Our results suggest that the designed HMSs@Au-PEG-RGD NSs/DOX nanoplatform may be used for combination chemotherapy and PTT of tumors. STATEMENT OF SIGNIFICANCE We demonstrate a convenient approach to preparing a novel RGD-targeted drug delivery system of HMSs@Au-PEG-RGD NSs/DOX that possesses pH/NIR laser dual-responsive drug delivery performance for combinational chemotherapy and PTT of tumors. The developed Au NS-coated HMS capsules have both merits of HMS capsules that can be used for high payload drug loading and Au NSs that have NIR laser-induced photothermal conversion efficiency (70.8%) and can be used for PTT of tumors.
Collapse
|
44
|
Poh S, Putt KS, Low PS. Folate-Targeted Dendrimers Selectively Accumulate at Sites of Inflammation in Mouse Models of Ulcerative Colitis and Atherosclerosis. Biomacromolecules 2017; 18:3082-3088. [PMID: 28863264 DOI: 10.1021/acs.biomac.7b00728] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Scott Poh
- College
of Engineering and Science - Chemistry, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Karson S. Putt
- Institute
for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Institute
for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
45
|
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017; 22:E1350. [PMID: 28841180 PMCID: PMC6151832 DOI: 10.3390/molecules22091350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Meilin Zhu
- Basic Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
46
|
Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700996. [PMID: 28643452 DOI: 10.1002/adma.201700996] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT.
Collapse
Affiliation(s)
- Guosheng Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
47
|
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017; 6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.
Collapse
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Robin A. Nadar
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Martin Hrubý
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
48
|
Li X, Xing L, Zheng K, Wei P, Du L, Shen M, Shi X. Formation of Gold Nanostar-Coated Hollow Mesoporous Silica for Tumor Multimodality Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5817-5827. [PMID: 28118704 DOI: 10.1021/acsami.6b15185] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Development of multifunctional nanoplatforms for tumor multimode imaging and therapy is of great necessity. Herein, we report a new type of Au nanostar (NS)-coated, perfluorohexane (PFH)-encapsulated hollow mesoporous silica nanocapsule (HMS) modified with poly(ethylene glycol) (PEG) for tumor multimode ultrasonic (US)/computed tomography (CT)/photoacoustic (PA)/thermal imaging, and photothermal therapy (PTT). HMSs were first synthesized, silanized to have thiol surface groups, and coated with gold nanoparticles via a Au-S bond. Followed by growth of Au NSs on the surface of the HMSs, encapsulation of PFH in the interior of the HMSs, and surface conjugation of thiolated PEG, multifunctional HMSs@Au-PFH-mPEG NSs (for short, HAPP) were formed and well-characterized. We show that the HAPP are stable in a colloidal manner and noncytotoxic in the studied range of concentrations, possess multimode US/CT/PA/thermal imaging ability, and can be applied for multimode US/CT/PA/thermal imaging of tumors in vivo after intravenous or intratumoral injection. Additionally, the near-infrared absorption property of the HAPP enables the use of the HAPP for photothermal ablation of cancer cells in vitro and a tumor model in vivo after intratumoral injection. The developed multifunctional HAPP may be used as a novel multifunctional theranostic nanoplatform for tumor multimode imaging and PTT.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Lingxi Xing
- Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Kailiang Zheng
- Engineering Department, Crop Science Division of Bayer , Institute, West Virginia 25112, United States
| | - Ping Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| |
Collapse
|
49
|
Yang T, Liang Y, Hou J, Dou Y, Zhang W. Metabolizable lanthanum-coordination nanoparticles as efficient radiosensitizers for solid tumor therapy. J Mater Chem B 2017; 5:5137-5144. [DOI: 10.1039/c7tb01054k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolizable lanthanum-coordination nanoparticles have been rationally designed and used as novel nano-sized radiosensitizers for solid tumor therapy.
Collapse
Affiliation(s)
- Tianbo Yang
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Yuan Liang
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Jiazi Hou
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Yanli Dou
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Wanxi Zhang
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
50
|
Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 2016; 7:11. [PMID: 28066513 PMCID: PMC5167776 DOI: 10.1186/s12645-016-0024-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/25/2016] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy has been an integral treatment modality for cancer. The field arose from and progressed through innovations in physics, engineering, and biology. The evolution of radiation oncology will rely on the continued adoption of advances from other fields. A new area of science that possesses the ability to impact radiation oncology is nanomedicine. Materials on the nanoscale provide many unique properties such as enhanced permeability and retention effect and superparamagnetism that are well suited for applications in radiation oncology. In this review, we will provide a comprehensive summary on how nanotechnology can improve cancer radiotherapy in aspects of treatment delivery and monitoring as well as diagnosis.
Collapse
Affiliation(s)
- Yu Mi
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Zhiying Shao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| | - Johnny Vang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Orit Kaidar-Person
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|