1
|
Zhou S, Li W, Li J, Li R. Impact of inhibitor loaded with pigments content on properties of inorganic zinc rich coatings. Heliyon 2024; 10:e24739. [PMID: 38304816 PMCID: PMC10830574 DOI: 10.1016/j.heliyon.2024.e24739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
In order to overcome the poor dispersion of traditional inorganic zinc-rich coating, addressing the sedimentation and the agglomeration caused by high zinc powder content and improve the anti-corrosion performance of coatings. In this paper, the molybdate intercalated hydrotalcite flake zinc layer double hydroxide (ZnAl-NO3-/LDH) was synthesized by hydrothermal synthesis method at first, and the KH560 modified the Mo/LDH flake zinc powder was further obtained by ion exchange method. The results show that the samples have a layered structure of hydrotalcite with good crystal structure through X-ray diffraction (XRD) and Fourier transform infrared (FT-IR), and the molybdate corrosion inhibiting ions inserted successfully into the interlayer structure of hydrotalcite. Meanwhile, different contents of pigments and fillers were added into the inorganic zinc-rich coatings. It was found that the Nyquist radius of curvature and modulus value of the coating were the largest with a pigment and filler content of 40 %, the maximum corrosion potential was -0.017V, and the minimum corrosion current density was 3.377 × 10-7 A-cm-2. The result indicates that the coating has the best corrosion resistance with 40 % pigment content, which has good application prospects in the fields of cross-sea bridges, natural gas and oil pipelines et al.
Collapse
Affiliation(s)
| | - Weijie Li
- East China Jiaotong University, China
| | | | | |
Collapse
|
2
|
Yin M, Wang Z, Xie P, Han L, Li L, Wang H, Qiao X, Deng Q. Fluorescence sensing platform for Cronobacter sakazakii based on the cationic metal-organic frameworks modified upconversion nanoparticles. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Jiang X, Mietner JB, Harder C, Komban R, Chen S, Strelow C, Sazama U, Fröba M, Gimmler C, Müller-Buschbaum P, Roth SV, Navarro JRG. 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5687-5700. [PMID: 36669131 DOI: 10.1021/acsami.2c20775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.
Collapse
Affiliation(s)
- Xuehe Jiang
- Institute of Wood Science, University Hamburg, Leuschnerstraße 91, 21031 Hamburg, Germany
| | - J Benedikt Mietner
- Institute of Wood Science, University Hamburg, Leuschnerstraße 91, 21031 Hamburg, Germany
| | - Constantin Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rajesh Komban
- Fraunhofer Center for Applied Nanotechnology CAN, Grindelallee 117, D-20146 Hamburg, Germany
| | - Shouzheng Chen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Strelow
- Department of Chemistry, Institute of Physical Chemistry, University Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Uta Sazama
- Department of Chemistry, Institute of Inorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Michael Fröba
- Department of Chemistry, Institute of Inorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Christoph Gimmler
- Fraunhofer Center for Applied Nanotechnology CAN, Grindelallee 117, D-20146 Hamburg, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funtionelle Materielien, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
- Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Julien R G Navarro
- Institute of Wood Science, University Hamburg, Leuschnerstraße 91, 21031 Hamburg, Germany
| |
Collapse
|
4
|
Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021; 22:3168-3201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The strong upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) endows the nanoparticles with attractive features for combined imaging and drug delivery. UCNPs convert near-infrared (NIR) light into light of shorter wavelengths such as light in the ultraviolet (UV) and visible regions, which can be used for light-guided drug delivery. Although light-responsive drug delivery systems as such have been known for many years, their application in medicine is limited, as strong UV-light can be damaging to tissue; moreover, UV light will not penetrate deeply into the skin, an issue that UCNPs can now address. However, UCNPs, as obtained after synthesis, are usually hydrophobic and require further surface functionalization to be stable in plasma. Polymers can serve as versatile surface coatings, as they can provide good colloidal stability, prevent the formation of a protein corona, provide a matrix for drugs, and be stimuli-responsive. In this Review, we provide a brief overview of the most recent progress in the synthesis of UCNPs with different shapes/sizes. We will then discuss the purpose of polymer coating for drug delivery before summarizing the strategies to coat UCNPs with various polymers. We will introduce the different polymers that have so far been used to coat UCNPs with the purpose to create a drug delivery system, focusing in detail on light-responsive polymers. To expand the application of UCNPs to allow photothermal therapy or magnetic resonance imaging (MRI) or to simply enhance the loading capacity of drugs, UCNPs were often combined with other materials to generate multifunctional nanoparticles such as carbon-based NPs and nanoMOFs. We then conclude with a discussion on drug loading and release and summarize the current knowledge on the toxicity of these polymer-coated UCNPs.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| |
Collapse
|
5
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Tuning polymers grafted on upconversion nanoparticles for the delivery of 5-fluorouracil. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Yin M, Jing C, Li H, Deng Q, Wang S. Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. J Nanobiotechnology 2020; 18:41. [PMID: 32111217 PMCID: PMC7049179 DOI: 10.1186/s12951-020-00596-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The identification of foodborne pathogenic bacteria types plays a crucial role in food safety and public health. In consideration of long culturing times, tedious operations and the desired specific recognition elements in conventional methods, the alternative fluorescent sensor arrays can offer a high-effective approach in bacterial identification by using multiple cross-reactive receptors. Herein, we achieve this goal by constructing an upconversion fluorescent sensor array based on anti-stokes luminogens featuring a series of functional lanthanide-doped upconversion nanoparticles (UCNPs) with phenylboronic acid, phosphate groups, or imidazole ionic liquid. The prevalent spotlight effect of microorganism and the electrostatic interaction between UCNPs and bacteria endow such sensor array an excellent discrimination property. RESULTS Seven common foodborne pathogenic bacteria including two Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) and five Gram-negative bacteria (Escherichia coli, Salmonella, Cronobacter sakazakii, Shigella flexneri and Vibrio parahaemolyticus) are precisely identified with 100% accuracy via linear discriminant analysis (LDA). Furthermore, blends of bacteria have been identified accurately. Bacteria in real samples (tap water, milk and beef) have been effectively discriminated with 92.1% accuracy. CONCLUSIONS Current fluorescence sensor array is a powerful tool for high-throughput bacteria identification, which overcomes the time-consuming bacteria culture and heavy dependence of specific recognition elements. The high efficiency of whole bacterial cell detection and the discrimination capability of life and death bacteria can brighten the application of fluorescence sensor array.
Collapse
Affiliation(s)
- Mingyuan Yin
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chuang Jing
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haijie Li
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
7
|
Highly Luminescent Ternary Nanocomposite of Polyaniline, Silver Nanoparticles and Graphene Oxide Quantum Dots. Sci Rep 2019; 9:16984. [PMID: 31740719 PMCID: PMC6861458 DOI: 10.1038/s41598-019-53584-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Quantum dots (QDs) with photostability show a potential application in optical sensing and biological imaging. In this work, ternary nanocomposite (NC) of high fluorescent polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA) capped silver nanoparticles (NPs)/graphene oxide quantum dots (PANI/Ag (AMPSA)/GO QDs) have been synthesized by in situ chemical oxidative polymerization of aniline in the presence of Ag (AMPSA) NPs and GO QDs. Ag (AMPSA) NPs and GO QDs were prepared by AgNO3 chemical reduction and glucose carbonization methods, respectively. The prepared materials were characterized using UV-visible, Fourier transform infrared (FTIR), photoluminescence and Raman spectroscopies, X-Ray diffractometer (XRD) and high- resolution transmission electron microscopy (HRTEM). HRTEM micrographs confirmed the preparation of GO QDs with an average size of 15 nm and Ag (AMPSA) NPs with an average size of 20 nm. PANI/Ag (AMPSA)/GO QDs NC showed high and stable emission peak at 348 nm. This PANI/Ag (AMPSA)/GO QDs NC can emerge as a new class of fluorescence materials that could be suitable for practical sensing applications.
Collapse
|
8
|
Estebanez N, González-Béjar M, Pérez-Prieto J. Polysulfonate Cappings on Upconversion Nanoparticles Prevent Their Disintegration in Water and Provide Superior Stability in a Highly Acidic Medium. ACS OMEGA 2019; 4:3012-3019. [PMID: 31459525 PMCID: PMC6648593 DOI: 10.1021/acsomega.8b03015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 05/23/2023]
Abstract
The stability of organic cappings on hexagonal NaYF4:Ln3+ upconversion nanoparticles (UCNPs) is crucial for their luminescence efficiency in aqueous solutions. The capping removal quickens as the acidity of the medium increases. We demonstrate here that polysulfonates, namely poly(2-acrylamido-2-methyl-1-propanesulfonate) (PAMPS) and poly(sodium 4-styrene sulfonate) (PSS), remain anchored to the surface of NaYF4:Yb3+,Er3+/Tm3 UCNPs even at a pH as low as 2 due to strong acidity of the sulfonate anchoring groups (pK a of ca. -3). Bare UCNPs progressively disintegrate into their compositional F-, Na+, Y3+, and Ln3+ ions. Their disintegration is particularly worrying in highly diluted dispersions of nanoparticles because both the lanthanide ions and/or the bare UCNPs can cause undesirable interference in a chemical or biological environment. Remarkably, the UC@PSS nanohybrid is particularly chemically stable, exhibiting an amazingly low release of Y3+ and Ln3+ ions for up to 96 h in highly diluted water dispersions (10 μg/mL). Additional advantages of the use of PSS as capping layer are its biocompatibility and its high dispersibility in water, together with easy further functionalization of the UCNP@PSS nanohybrids.
Collapse
Affiliation(s)
- Nestor Estebanez
- Instituto
de Ciencia Molecular (ICMol) Departamento de Química
Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - María González-Béjar
- Instituto
de Ciencia Molecular (ICMol) Departamento de Química
Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Julia Pérez-Prieto
- Instituto
de Ciencia Molecular (ICMol) Departamento de Química
Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
9
|
Colloidal photoemissive nanoparticles. CHEMTEXTS 2018. [DOI: 10.1007/s40828-018-0063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Duong HTT, Chen Y, Tawfik SA, Wen S, Parviz M, Shimoni O, Jin D. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv 2018; 8:4842-4849. [PMID: 35539541 PMCID: PMC9077784 DOI: 10.1039/c7ra13765f] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Despite intense efforts on surface functionalization to generate hydrophilic upconversion nanoparticles (UCNPs), long-term colloidal stability in physiological buffers remains a major concern. Here we quantitatively investigate the competitive adsorption of phosphate, carboxylic acid and sulphonic acid onto the surface of UCNPs and study their binding strength to identify the best conjugation strategy. To achieve this, we designed and synthesized three di-block copolymers composed of poly(ethylene glycol) methyl ether acrylate and a polymer block bearing phosphate, carboxylic or sulphonic acid anchoring groups prepared by an advanced polymerization technique, Reversible Addition Fragmentation Chain Transfer (RAFT). Analytical tools provide the evidence that phosphate ligands completely replaced all the oleic acid capping molecules on the surface of the UCNPs compared with incomplete ligand exchange by carboxylic and sulphonic acid groups. Meanwhile, simulated quantitative adsorption energy measurements confirmed that among the three functional groups, the calculated adsorption strength for phosphate anchoring ligands is higher which is in good agreement with experimental results regarding the best colloidal stability, especially in phosphate buffer solution. This finding suggests that polymers with multiple anchoring negatively charged phosphate moieties provide excellent colloidal stability for lanthanide ion-doped luminescent nanoparticles for various potential applications. Here we quantitatively investigate the competitive adsorption of polymers bearing phosphate, carboxylic acid and sulphonic acid anchoring groups onto the surface of UCNPs and study their binding strength to identify the best conjugation strategy.![]()
Collapse
Affiliation(s)
- Hien T. T. Duong
- Institute for Biomedical Materials and Devices
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
| | - Sherif Abdulkader Tawfik
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
- Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
| | - Maryam Parviz
- Institute for Biomedical Materials and Devices
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
| | - Dayong Jin
- Institute for Biomedical Materials and Devices
- School of Mathematical and Physical Sciences
- Faculty of Science
- University of Technology
- Sydney
| |
Collapse
|
11
|
Duan C, Liang L, Li L, Zhang R, Xu ZP. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J Mater Chem B 2018; 6:192-209. [DOI: 10.1039/c7tb02527k] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the biomedical applications of upconversion luminescence nanomaterials, including lanthanide-doped inorganic nanocrystals and TTA-based UCNPs.
Collapse
Affiliation(s)
- Chengchen Duan
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Liuen Liang
- ARC Centre of Excellence for Nanoscale BioPhotonics
- Department of Physics and Astronomy
- Macquarie University
- Sydney
- Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
12
|
Chong BSK, Moore EG. Structure and efficient luminescence upconversion of Ln(iii) aromatic N-oxide coordination polymers. Dalton Trans 2016; 45:12200-5. [PMID: 27411484 DOI: 10.1039/c6dt01828a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of lanthanide-based coordination polymers {[Yb1-xErx(4,4'-bpdo)3(H2O)2](CF3SO3)3}∞ were synthesised by solvent diffusion techniques, where 4,4'-bpdo = 4,4'-bipyridine-N,N'-dioxide, and using differing mole fractions of Yb(iii) and Er(iii) which were systematically varied (x = 0, 0.05, 0.20, 0.50 and 1). All of the materials obtained were characterised using elemental analyses, single-crystal X-ray diffraction (SXRD) and solid-state photoluminescence studies. Structurally, the coordination polymers crystallise as an isomorphous series of infinite 2D sheets, which contain two inner sphere water molecules, and are isostructural with a previously characterised homometallic Yb(iii) compound. In addition to the normal Near Infra-Red (NIR) luminescence, these compounds also demonstrate upconversion emission upon 980 nm excitation. Upconversion luminescence measurements reveal visible emission in the red, green, and blue regions corresponding to the (2)H11/2→(4)I15/2, (4)F9/2→(4)I15/2 and (2)H9/2→(4)I15/2 transitions of the Er(iii) cation upon two and three-photon excitation. We also observed weak emission from the Er(iii) cation in the UV region for the first time in a Ln-MOF based material.
Collapse
Affiliation(s)
- Bowie S K Chong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|