1
|
Zhao J, Yuan J, Fang Z, Huang S, Chen Z, Qiu F, Lu C, Zhu J, Zhuang X. One-dimensional coordination polymers based on metal–nitrogen linkages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
A Zn(II) Metallocycle as Platform to Assemble a 1D + 1D → 1D Polyrotaxane via π···π Stacking of an Ancillary Ligand. INORGANICS 2019. [DOI: 10.3390/inorganics7110137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new [Zn2L2] metallocycle bearing two metal centers that can coordinate ancillary ligands and a pocket suitable to host guest molecules is reported. These two features are exploited by reacting the metallocycle with a pyridine ligand to self-assemble in the solid state an extended intertwined system with the rare 1D + 1D → 1D topology. This interpenetrated architecture is supported by π···π stacking between two pyridine units of two different metallocycles in the pocket of a third metallocycle.
Collapse
|
3
|
Wang S, Liu J, Zhao H, Guo Z, Xing H, Gao Y. Electrically Conductive Coordination Polymer for Highly Selective Chemiresistive Sensing of Volatile Amines. Inorg Chem 2017; 57:541-544. [DOI: 10.1021/acs.inorgchem.7b02464] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siping Wang
- Provincial Key Laboratory
of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
| | - Jie Liu
- State Key
Laboratory on Integrated Optoelectronics, College of Electronic Science
and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Hongmei Zhao
- Provincial Key Laboratory
of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
| | - Zhifen Guo
- Provincial Key Laboratory
of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
| | - Hongzhu Xing
- Provincial Key Laboratory
of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
| | - Yuan Gao
- State Key
Laboratory on Integrated Optoelectronics, College of Electronic Science
and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
4
|
Méndez-Ardoy A, Markandeya N, Li X, Tsai YT, Pecastaings G, Buffeteau T, Maurizot V, Muccioli L, Castet F, Huc I, Bassani DM. Multi-dimensional charge transport in supramolecular helical foldamer assemblies. Chem Sci 2017; 8:7251-7257. [PMID: 29147547 PMCID: PMC5633016 DOI: 10.1039/c7sc03341a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 11/21/2022] Open
Abstract
Aromatic foldamers are bioinspired architectures whose potential use in materials remains largely unexplored. Here we report our investigation of vertical and horizontal charge transport over long distances in helical oligo-quinolinecarboxamide foldamers organized as single monolayers on Au or SiO2. Conductive atomic force microscopy showed that vertical conductivity is efficient and that it displays a low attenuation with foldamer length (0.06 Å-1). In contrast, horizontal charge transport is found to be negligible, demonstrating the strong anisotropy of foldamer monolayers. Kinetic Monte Carlo calculations were used to probe the mechanism of charge transport in these helical molecules and revealed the presence of intramolecular through-space charge transfer integrals approaching those found in pentacene and rubrene crystals, in line with experimental results. Kinetic Monte Carlo simulations of charge hopping along the foldamer chain evidence the strong contribution of multiple 1D and 3D pathways in these architectures and their dependence on conformational order. These findings show that helical foldamer architectures may provide a route for achieving charge transport over long distance by combining multiple charge transport pathways.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Nagula Markandeya
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Xuesong Li
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Yu-Tang Tsai
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Gilles Pecastaings
- Inst. Polytechnique de Bordeaux CNRS UMR 5629 LCPO , 16, Av. Pey-Berland , 33600 Pessac , France
| | - Thierry Buffeteau
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Victor Maurizot
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Luca Muccioli
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Frédéric Castet
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Ivan Huc
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Dario M Bassani
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| |
Collapse
|